A subspace expanding technique(SET) is proposed to efficiently discover and find all zeros of nonlinear functions in multi-degree-of-freedom(MDOF) engineering systems by discretizing the space into smaller subdomains,...A subspace expanding technique(SET) is proposed to efficiently discover and find all zeros of nonlinear functions in multi-degree-of-freedom(MDOF) engineering systems by discretizing the space into smaller subdomains, which are called cells. The covering set of the cells is identified by parallel calculations with the root bracketing method. The covering set can be found first in a low-dimensional subspace, and then gradually extended to higher dimensional spaces with the introduction of more equations and variables into the calculations. The results show that the proposed SET is highlyefficient for finding zeros in high-dimensional spaces. The subdivision technique of the cell mapping method is further used to refine the covering set, and the obtained numerical results of zeros are accurate. Three examples are further carried out to verify the applicability of the proposed method, and very good results are achieved. It is believed that the proposed method will significantly enhance the ability to study the stability, bifurcation,and optimization problems in complex MDOF nonlinear dynamic systems.展开更多
We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcrack...We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcracks are found on the inner surface of SET. Their morphology and parameters such as length and depth are investigated by use of metallographic microscope and scanning electron microscope (SEM). In addition, the Voronoi cell technique is adopted to characterize the multi-phase material microstructure of the SET. By using the anisotropic elastoplastic material constitutive model and macro/microscopic multi-dimensional cross-scale coupled boundary conditions, a sophisticated and multi-scale finite element model (FEM) of the SET is built successfully to simulate the material microstructure damage for different expansion ratios. The microcrack initiation and growth is simulated, and the structural integrity of the SET is discussed. It is concluded that this multi-scale finite element modeling method could effectively predict the elastoplastic deformation and the microscopic damage initiation and evolution of the SET. It is of great significance as a theoretical analysis tool to optimize the selection of appropriate tubular materials and it could be also used to substantially reduce costly failures of expandable tubulars in the field. This numerical analysis is not only beneficial for understanding the damage process of tubular materials but also effectively guides the engineering application of the SET technology.展开更多
基金the National Natural Science Foundation of China (Nos. 11702213,11772243,11572215,and 11332008)the Natural Science Foundation of Shaanxi Province of China(No. 2018JQ1061)。
文摘A subspace expanding technique(SET) is proposed to efficiently discover and find all zeros of nonlinear functions in multi-degree-of-freedom(MDOF) engineering systems by discretizing the space into smaller subdomains, which are called cells. The covering set of the cells is identified by parallel calculations with the root bracketing method. The covering set can be found first in a low-dimensional subspace, and then gradually extended to higher dimensional spaces with the introduction of more equations and variables into the calculations. The results show that the proposed SET is highlyefficient for finding zeros in high-dimensional spaces. The subdivision technique of the cell mapping method is further used to refine the covering set, and the obtained numerical results of zeros are accurate. Three examples are further carried out to verify the applicability of the proposed method, and very good results are achieved. It is believed that the proposed method will significantly enhance the ability to study the stability, bifurcation,and optimization problems in complex MDOF nonlinear dynamic systems.
基金Project supported by the National Major Science & Technology Project of China (Grant No. 2016ZX05020-003).
文摘We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcracks are found on the inner surface of SET. Their morphology and parameters such as length and depth are investigated by use of metallographic microscope and scanning electron microscope (SEM). In addition, the Voronoi cell technique is adopted to characterize the multi-phase material microstructure of the SET. By using the anisotropic elastoplastic material constitutive model and macro/microscopic multi-dimensional cross-scale coupled boundary conditions, a sophisticated and multi-scale finite element model (FEM) of the SET is built successfully to simulate the material microstructure damage for different expansion ratios. The microcrack initiation and growth is simulated, and the structural integrity of the SET is discussed. It is concluded that this multi-scale finite element modeling method could effectively predict the elastoplastic deformation and the microscopic damage initiation and evolution of the SET. It is of great significance as a theoretical analysis tool to optimize the selection of appropriate tubular materials and it could be also used to substantially reduce costly failures of expandable tubulars in the field. This numerical analysis is not only beneficial for understanding the damage process of tubular materials but also effectively guides the engineering application of the SET technology.