A series of tests were performed to investigate the macroscopic properties and the stabilization mechanism of calcium lignosulphonate modified expansive soil.Compared with natural soil,soil modified by 4%calcium ligno...A series of tests were performed to investigate the macroscopic properties and the stabilization mechanism of calcium lignosulphonate modified expansive soil.Compared with natural soil,soil modified by 4%calcium lignosulphonate showed 56.5%increased 28 days unconfined compressive strength and 23.8%decreased free expansion rate.The X-ray diffraction analysis results indicate the existence of cation exchange and the reduction of montmorillonite interplanar spacing.The X-computed tomography results demonstrate that calcium lignosulphonate decreased the porosity and optimized the pore distribution.The calcium lignosulphonate also increased the stability of the suspension system according to the Zeta potential results.Moreover,the results of rheological tests show that the moderate amount of calcium lignosulphonate enhanced the yield stress and the plastic viscosity,proving the formation of a strong connection between soil particles.展开更多
The common defects of the Roe scheme are the non-physical expansion shock and shock instability. By removing the momentum interpolation mechanism(MIM), an improved method with several advantages has been presented to ...The common defects of the Roe scheme are the non-physical expansion shock and shock instability. By removing the momentum interpolation mechanism(MIM), an improved method with several advantages has been presented to suppress the shock instability. However, it cannot prevent the expansion shock and is incompatible with the traditional curing method for expansion shock. To solve the problem, the traditional curing mechanism is analyzed. Effectiveness of the traditional curing method is discussed,and several defects are identified, one of which leads to incompatibility between curing shock instability and expansion shock. Consequently, an improved Roe scheme is proposed, which is with low computational costs, concise, easy to implement, and robust.More importantly, the proposed scheme can simultaneously solve the problem of shock instability and expansion shock without additional costs.展开更多
In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue t...In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.展开更多
Bio-asphalt has a great application prospect in the replacement of petroleum-based asphalt to pave and maintain asphalt pavement. However, the problems of flow-induced crystallization and phase separation caused by fl...Bio-asphalt has a great application prospect in the replacement of petroleum-based asphalt to pave and maintain asphalt pavement. However, the problems of flow-induced crystallization and phase separation caused by flowinduced crystallization had severely restricted its application. This paper describes the progress of research on preparation, property evaluation and phase separation mechanism of bio-asphalt. The advantages and disadvantages of preparation methods of bio-asphalt are states. The fundamental physical and rheological properties of bio-asphalt are investigated, especially for flow-induced crystallization. There exists obvious flow-induced crystallization because bio-asphalt is rich in waxes that crystallize easily. Owing to the existence of excess biochar,bio-asphalt appears phase separation. A brief review of the effect of bio-oil and biochar on asphalt volatile organic compounds(VOCs) is presented. Research find that bio-oil/biochar are not only replenish the light components of asphalt, but also improve the flow-induced crystallization and phase separation of bio-asphalt. There exists synergistic effect of biochar and bio-oil in asphalt modification. Moreover, biochar can improve the durability of bio-oil modified asphalt, but excessive addition of biochar to bio-oil modified asphalt can cause phase separation.Adding an appropriate amount of bio-oil and biochar to asphalt can improve its high-temperature resistance, lowtemperature crack resistance, and system compatibility.展开更多
This research systematically analyses land-use map of Changsha city in different periods of time. The spatial form and structural evolution was analysed by studying indices such as city land-use structure proportion, ...This research systematically analyses land-use map of Changsha city in different periods of time. The spatial form and structural evolution was analysed by studying indices such as city land-use structure proportion, expansion intensity, economic flexibility, population flexibility, changing compactness index and so on. The dynamic mechanism of urban land expansion has been discussed by integrating the regional social economy development situation and many aspects such as the physiographical surrounding, population and economic development, traffic infrastructure, planning and regional development tactic and system innovation. The research indicates that the urban land expansion speed and intensity have steadily increased in Changsha from 1949 to 2004. The expansion form has been from a single external expansion to a combination form of external and internal expansion, from a circular or linear continuous form to a blocky or agglomeration shape. Overall, the urban land expansion of Changsha city is a phasic, diversified and complex process. And no matter what the stage is, it is an organic system containing multiple speed, pattern and shape, which are driven by multiple impetuses. The dominant feature at different stages was highlighted because of the balance and fluctuation between different forces, and the existing urban land border and shape have resulted from the joint efforts of these phasic forces.展开更多
High reinforcement content SiCp/Cu composites (φp=50%, 55% and 60%) for electronic packaging applications were fabricated by patent cost-effective squeeze-casting technology. The composites appear to be free of pores...High reinforcement content SiCp/Cu composites (φp=50%, 55% and 60%) for electronic packaging applications were fabricated by patent cost-effective squeeze-casting technology. The composites appear to be free of pores, and the SiC particles are distribute uniformly in the composites. The mean linear coefficients of thermal expansion (CTEs, 20-100 ℃ ) of as-cast SiCp/Cu composites range from 8.8×10-6 ℃-1 to 9.9×10-6 ℃-1 and decrease with the increase of SiC content. The experimental CTEs of as-cast SiCp/Cu composites agree well with the predicted values based on Kerner model. The CTEs of composites reduce after annealing treatment due to the fact that the internal stress of the composite is released. The Brinell hardness increases from 272.3 to 313.2, and the modulus increases from 186 GPa to 210 GPa for the corresponding composites. The bending strength is larger than 374 MPa, but no obvious trend between bending strength and SiCp content is observed.展开更多
Backfill mining technology is the practice of returning waste materials underground for both disposal and geotechnical stability,however,a challenge with current technologies is that they commonly require cement-based...Backfill mining technology is the practice of returning waste materials underground for both disposal and geotechnical stability,however,a challenge with current technologies is that they commonly require cement-based binders which have a relatively high environmental impact.Finding alternatives to cement-based binders can improve environmental performance and this paper proposes microbial grouted backfill(MGB)as a potential solution.In this paper,the effects of the cementation solution concentration(CSC),volume ratio of bacterial solution to cementation solution(VRBC),particle sizes of the aggregates,and the number of grouting batches on the mechanical properties of MGB are studied.The experimental results show that MGB strength increased,up to a peak value,as CSC was increased,before decreasing as CSC was increased further.The results also show that MGB strength increased,up to a peak value,as VRBC decreased,before decreasing as the VRBC was decreased further.The peak strength was achieved at a CSC of 2 mol/L and a VRBC of 1:9.The strength of the MGB also increased as the number of grouting batches increased.Graded MGB samples showed the highest UCS,25.12 MPa,at particle sizes of 0.2 to 0.8 mm,while full(non-graded)MGB samples displayed mean UCS values ranging from1.56 MPa when the maximum particle size was 0.2 mm,up to 13 MPa when the maximum particle size was 1.2 mm.MGB samples are consolidated by the calcium carbonate that is precipitated during microbial metabolism,and the strength of MGB increases linearly as calcium carbonate content increases.The calcium carbonate minerals produced in MGB materials are primarily calcite,with secondary amounts of vaterite.展开更多
To review possible mechanisms and therapeutics for acute lung injury(ALI) and acute respiratory distress syndrome(ARDS). ALI/ARDS causes high mortality. The risk factors include head injury, intracranial disorders, se...To review possible mechanisms and therapeutics for acute lung injury(ALI) and acute respiratory distress syndrome(ARDS). ALI/ARDS causes high mortality. The risk factors include head injury, intracranial disorders, sepsis, infections and others. Investigations have indicated the detrimental role of nitric oxide(NO) through the inducible NO synthase(i NOS). The possible therapeutic regimen includes extracorporeal membrane oxygenation, prone position, fluid and hemodynamic management and permissive hypercapnic acidosis etc. Other pharmacological treatments are anti-inflammatory and/or antimicrobial agents, inhalation of NO, glucocorticoids, surfactant therapy and agents facilitating lung water resolution and ion transports. β-adrenergic agonists are able to accelerate lung fluid and ion removal and to stimulate surfactant secretion. In con-scious rats, regular exercise training alleviates the endotoxin-induced ALI. Propofol and N-acetylcysteine exert protective effect on the ALI induced by endotoxin. Insulin possesses anti-inflammatory effect. Pentobarbital is capable of reducing the endotoxin-induced ALI. In addition, nicotinamide or niacinamide abrogates the ALI caused by ischemia/reperfusion or endotoxemia. This review includes historical retrospective of ALI/ARDS, the neurogenic pulmonary edema due to head injury, the detrimental role of NO, the risk factors, and the possible pathogenetic mechanisms as well as therapeutic regimen for ALI/ARDS.展开更多
The microstructure,texture evolution and mechanical properties of AZ31 magnesium alloy were investigated during the cyclic expansion extrusion with the asymmetrical extrusion cavity(CEE-AEC)process.The results show th...The microstructure,texture evolution and mechanical properties of AZ31 magnesium alloy were investigated during the cyclic expansion extrusion with the asymmetrical extrusion cavity(CEE-AEC)process.The results show that continuous dynamic recrystallization(CDRX)and discontinuous dynamic recrystallization(DDRX)occur during the CEE-AEC process.After 3 passes,the microstructures of the deformed samples are refined,and the average grain size of the alloys in asymmetrical cavity region is 6.9μm.The maximum intensities of the basal textures increase with the increase in the number of passes,and the basal textures are deflected during the deformation process.The basal texture of the alloys in asymmetrical cavity region is tilted by approximately±45°from the normal direction(ND)to the extrusion direction(ED).Grain refinement strengthening and texture deflection significantly improve the comprehensive mechanical properties of the deformed alloys.After 3 passes,tensile yield strength(TYS),ultimate tensile strength(UTS)and elongation-to-failure of the alloy in the asymmetric cavity region are 146 MPa,230 MPa and 29.7%,respectively.展开更多
Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HC...Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HCEE process at elevated temperatures, high-pressure molten linear low-density polyethylene(LLDPE) was used as a fluid to eliminate frictional forces. To study the capability of the process,AM60 magnesium rods were processed and the properties were investigated. The mechanical properties were found to improve significantly after the HCEE process. The yield and ultimate strengths increased from initial values of 138 and 221 MPa to 212 and 317 MPa, respectively.Moreover, the elongation was enhanced due to the refined grains and the existence of high hydrostatic pressure. Furthermore, the microhardness was increased from HV 55.0 to HV 72.5. The microstructural analysis revealed that ultrafine-grained structure could be produced by the HCEE process. Moreover, the size of the particles decreased, and these particles thoroughly scattered between the grains. Finite element analysis showed that the HCEE was independent of the length of the sample, which makes the process suitable for industrial applications.展开更多
基金Funded by National Natural Science Foundation of China(Nos.51890904 and 51508090)National Key Technology R&D Program of China(No.2017YFB0309904)the National Basic Research Program of China(973 Program)(No.2015CB655100)。
文摘A series of tests were performed to investigate the macroscopic properties and the stabilization mechanism of calcium lignosulphonate modified expansive soil.Compared with natural soil,soil modified by 4%calcium lignosulphonate showed 56.5%increased 28 days unconfined compressive strength and 23.8%decreased free expansion rate.The X-ray diffraction analysis results indicate the existence of cation exchange and the reduction of montmorillonite interplanar spacing.The X-computed tomography results demonstrate that calcium lignosulphonate decreased the porosity and optimized the pore distribution.The calcium lignosulphonate also increased the stability of the suspension system according to the Zeta potential results.Moreover,the results of rheological tests show that the moderate amount of calcium lignosulphonate enhanced the yield stress and the plastic viscosity,proving the formation of a strong connection between soil particles.
基金Project supported by the National Natural Science Foundation of China(Nos.51736008 and 51276092)
文摘The common defects of the Roe scheme are the non-physical expansion shock and shock instability. By removing the momentum interpolation mechanism(MIM), an improved method with several advantages has been presented to suppress the shock instability. However, it cannot prevent the expansion shock and is incompatible with the traditional curing method for expansion shock. To solve the problem, the traditional curing mechanism is analyzed. Effectiveness of the traditional curing method is discussed,and several defects are identified, one of which leads to incompatibility between curing shock instability and expansion shock. Consequently, an improved Roe scheme is proposed, which is with low computational costs, concise, easy to implement, and robust.More importantly, the proposed scheme can simultaneously solve the problem of shock instability and expansion shock without additional costs.
基金financially supported by the Major Program of the National Natural Science Foundation of China(No.52394191)the Outstanding Ph.D Dissertation Cultivating Program of Xi’an University of Science and Technology(No.PY22001)the National Foundation for studying abroad(No.[2022]87)。
文摘In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.
基金supported by the National Natural Science Foundation of China (No. 52378456, No. W2421062, No. 52008235)the Special Foundation of Achievements Transformation Guide of Department of Science and Technology of Shanxi Province (No. 202204021301075, No.201804D131034)+1 种基金the Patent Transformation Project of Shanxi Province(No. 202306009)Shanxi Graduate Education Innovation Plan(2024SJ027)。
文摘Bio-asphalt has a great application prospect in the replacement of petroleum-based asphalt to pave and maintain asphalt pavement. However, the problems of flow-induced crystallization and phase separation caused by flowinduced crystallization had severely restricted its application. This paper describes the progress of research on preparation, property evaluation and phase separation mechanism of bio-asphalt. The advantages and disadvantages of preparation methods of bio-asphalt are states. The fundamental physical and rheological properties of bio-asphalt are investigated, especially for flow-induced crystallization. There exists obvious flow-induced crystallization because bio-asphalt is rich in waxes that crystallize easily. Owing to the existence of excess biochar,bio-asphalt appears phase separation. A brief review of the effect of bio-oil and biochar on asphalt volatile organic compounds(VOCs) is presented. Research find that bio-oil/biochar are not only replenish the light components of asphalt, but also improve the flow-induced crystallization and phase separation of bio-asphalt. There exists synergistic effect of biochar and bio-oil in asphalt modification. Moreover, biochar can improve the durability of bio-oil modified asphalt, but excessive addition of biochar to bio-oil modified asphalt can cause phase separation.Adding an appropriate amount of bio-oil and biochar to asphalt can improve its high-temperature resistance, lowtemperature crack resistance, and system compatibility.
基金Foundation of Education Department in Hunan Province, No.05C451
文摘This research systematically analyses land-use map of Changsha city in different periods of time. The spatial form and structural evolution was analysed by studying indices such as city land-use structure proportion, expansion intensity, economic flexibility, population flexibility, changing compactness index and so on. The dynamic mechanism of urban land expansion has been discussed by integrating the regional social economy development situation and many aspects such as the physiographical surrounding, population and economic development, traffic infrastructure, planning and regional development tactic and system innovation. The research indicates that the urban land expansion speed and intensity have steadily increased in Changsha from 1949 to 2004. The expansion form has been from a single external expansion to a combination form of external and internal expansion, from a circular or linear continuous form to a blocky or agglomeration shape. Overall, the urban land expansion of Changsha city is a phasic, diversified and complex process. And no matter what the stage is, it is an organic system containing multiple speed, pattern and shape, which are driven by multiple impetuses. The dominant feature at different stages was highlighted because of the balance and fluctuation between different forces, and the existing urban land border and shape have resulted from the joint efforts of these phasic forces.
基金Foundation item: Project(20080430895) supported by China Postdoctoral Science FoundationProject(2003AA5CG041) supported by the High-tech Research and Development Program of Harbin City, China
文摘High reinforcement content SiCp/Cu composites (φp=50%, 55% and 60%) for electronic packaging applications were fabricated by patent cost-effective squeeze-casting technology. The composites appear to be free of pores, and the SiC particles are distribute uniformly in the composites. The mean linear coefficients of thermal expansion (CTEs, 20-100 ℃ ) of as-cast SiCp/Cu composites range from 8.8×10-6 ℃-1 to 9.9×10-6 ℃-1 and decrease with the increase of SiC content. The experimental CTEs of as-cast SiCp/Cu composites agree well with the predicted values based on Kerner model. The CTEs of composites reduce after annealing treatment due to the fact that the internal stress of the composite is released. The Brinell hardness increases from 272.3 to 313.2, and the modulus increases from 186 GPa to 210 GPa for the corresponding composites. The bending strength is larger than 374 MPa, but no obvious trend between bending strength and SiCp content is observed.
基金supported by the National Natural Science Foundation of China(Nos.5180430852034009)+3 种基金the China Postdoctoral Science Foundation(Nos.2020T1302692020M670689)the Yue Qi Young Scholar Project(No.2020QN03)the Postdoctoral Research Project of Hebei Province(No.B2020003029)。
文摘Backfill mining technology is the practice of returning waste materials underground for both disposal and geotechnical stability,however,a challenge with current technologies is that they commonly require cement-based binders which have a relatively high environmental impact.Finding alternatives to cement-based binders can improve environmental performance and this paper proposes microbial grouted backfill(MGB)as a potential solution.In this paper,the effects of the cementation solution concentration(CSC),volume ratio of bacterial solution to cementation solution(VRBC),particle sizes of the aggregates,and the number of grouting batches on the mechanical properties of MGB are studied.The experimental results show that MGB strength increased,up to a peak value,as CSC was increased,before decreasing as CSC was increased further.The results also show that MGB strength increased,up to a peak value,as VRBC decreased,before decreasing as the VRBC was decreased further.The peak strength was achieved at a CSC of 2 mol/L and a VRBC of 1:9.The strength of the MGB also increased as the number of grouting batches increased.Graded MGB samples showed the highest UCS,25.12 MPa,at particle sizes of 0.2 to 0.8 mm,while full(non-graded)MGB samples displayed mean UCS values ranging from1.56 MPa when the maximum particle size was 0.2 mm,up to 13 MPa when the maximum particle size was 1.2 mm.MGB samples are consolidated by the calcium carbonate that is precipitated during microbial metabolism,and the strength of MGB increases linearly as calcium carbonate content increases.The calcium carbonate minerals produced in MGB materials are primarily calcite,with secondary amounts of vaterite.
基金Supported by Grants from the National Science Council,Far Eastern Medical FoundationTzu Chi Charitable Foundation
文摘To review possible mechanisms and therapeutics for acute lung injury(ALI) and acute respiratory distress syndrome(ARDS). ALI/ARDS causes high mortality. The risk factors include head injury, intracranial disorders, sepsis, infections and others. Investigations have indicated the detrimental role of nitric oxide(NO) through the inducible NO synthase(i NOS). The possible therapeutic regimen includes extracorporeal membrane oxygenation, prone position, fluid and hemodynamic management and permissive hypercapnic acidosis etc. Other pharmacological treatments are anti-inflammatory and/or antimicrobial agents, inhalation of NO, glucocorticoids, surfactant therapy and agents facilitating lung water resolution and ion transports. β-adrenergic agonists are able to accelerate lung fluid and ion removal and to stimulate surfactant secretion. In con-scious rats, regular exercise training alleviates the endotoxin-induced ALI. Propofol and N-acetylcysteine exert protective effect on the ALI induced by endotoxin. Insulin possesses anti-inflammatory effect. Pentobarbital is capable of reducing the endotoxin-induced ALI. In addition, nicotinamide or niacinamide abrogates the ALI caused by ischemia/reperfusion or endotoxemia. This review includes historical retrospective of ALI/ARDS, the neurogenic pulmonary edema due to head injury, the detrimental role of NO, the risk factors, and the possible pathogenetic mechanisms as well as therapeutic regimen for ALI/ARDS.
基金financial supports from International Science and Technology Cooperation Program of Shanxi Province,China(No.201603D421024)Shanxi Scholarship Council of China(No.2017-095)。
文摘The microstructure,texture evolution and mechanical properties of AZ31 magnesium alloy were investigated during the cyclic expansion extrusion with the asymmetrical extrusion cavity(CEE-AEC)process.The results show that continuous dynamic recrystallization(CDRX)and discontinuous dynamic recrystallization(DDRX)occur during the CEE-AEC process.After 3 passes,the microstructures of the deformed samples are refined,and the average grain size of the alloys in asymmetrical cavity region is 6.9μm.The maximum intensities of the basal textures increase with the increase in the number of passes,and the basal textures are deflected during the deformation process.The basal texture of the alloys in asymmetrical cavity region is tilted by approximately±45°from the normal direction(ND)to the extrusion direction(ED).Grain refinement strengthening and texture deflection significantly improve the comprehensive mechanical properties of the deformed alloys.After 3 passes,tensile yield strength(TYS),ultimate tensile strength(UTS)and elongation-to-failure of the alloy in the asymmetric cavity region are 146 MPa,230 MPa and 29.7%,respectively.
基金This work was financially supported by the Iran National Science Foundation(No.96000854).
文摘Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HCEE process at elevated temperatures, high-pressure molten linear low-density polyethylene(LLDPE) was used as a fluid to eliminate frictional forces. To study the capability of the process,AM60 magnesium rods were processed and the properties were investigated. The mechanical properties were found to improve significantly after the HCEE process. The yield and ultimate strengths increased from initial values of 138 and 221 MPa to 212 and 317 MPa, respectively.Moreover, the elongation was enhanced due to the refined grains and the existence of high hydrostatic pressure. Furthermore, the microhardness was increased from HV 55.0 to HV 72.5. The microstructural analysis revealed that ultrafine-grained structure could be produced by the HCEE process. Moreover, the size of the particles decreased, and these particles thoroughly scattered between the grains. Finite element analysis showed that the HCEE was independent of the length of the sample, which makes the process suitable for industrial applications.