To the serf-similar analytical solution of the Boussinesq equation of groundwater flow in a semi-infinite porous medium, when the hydraulic head at the boundary behaved like a power of time, Barenblatt obtained a powe...To the serf-similar analytical solution of the Boussinesq equation of groundwater flow in a semi-infinite porous medium, when the hydraulic head at the boundary behaved like a power of time, Barenblatt obtained a power series solution. However, he listed only the first three coefficients and did not give the recurrent formula among the coefficients. A formal proof of convergence of the series did not appear in his works. In this paper, the recurrent formula for the coefficients is obtained by using the method of power series expansion, and the convergence of the series is proven. The results can be easily understood and used by engineers in the catchment hydrology and baseflow studies as well as to solve agricultural drainage problems.展开更多
This paper presents the way to make expansion for the next form function: to the numerical series. The most widely used methods to solve this problem are Newtons Binomial Theorem and Fundamental Theorem of Calculus (t...This paper presents the way to make expansion for the next form function: to the numerical series. The most widely used methods to solve this problem are Newtons Binomial Theorem and Fundamental Theorem of Calculus (that is, derivative and integral are inverse operators). The paper provides the other kind of solution, except above described theorems.展开更多
Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration...Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.展开更多
Probabilistic load flow(PLF)algorithm has been regained attention,because the large-scale wind power integration into the grid has increased the uncertainty of the stable and safe operation of the power system.The PLF...Probabilistic load flow(PLF)algorithm has been regained attention,because the large-scale wind power integration into the grid has increased the uncertainty of the stable and safe operation of the power system.The PLF algorithm is improved with introducing the power performance of double-fed induction generators(DFIGs)for wind turbines(WTs)under the constant power factor control and the constant voltage control in this paper.Firstly,the conventional Jacobian matrix of the alternating current(AC)load flow model is modified,and the probability distributions of the active and reactive powers of the DFIGs are derived by combining the power performance of the DFIGs and the Weibull distribution of wind speed.Then,the cumulants of the state variables in power grid are obtained by improved PLF model and more accurate power probability distributions.In order to generate the probability density function(PDF)of the nodal voltage,Gram-Charlier,Edgeworth and Cornish-Fisher expansions based on the cumulants are applied.Finally,the effectiveness and accuracy of the improved PLF algorithm is demonstrated in the IEEE 14-RTS system with wind power integration,compared with the results of Monte Carlo(MC)simulation using deterministic load flow calculation.展开更多
Presented in this paper is a convergence theorem for a kind of composite power series expansions whose coefficients can be expressed by using Faa` di Bruno’s formula. A related problem is proposed as a remark, and a ...Presented in this paper is a convergence theorem for a kind of composite power series expansions whose coefficients can be expressed by using Faa` di Bruno’s formula. A related problem is proposed as a remark, and a few examples are given as applications.展开更多
Numerous privacy-preserving issues have emerged along with the fast development of Internet, both in theory and in real-life applications. To settle the privacy-preserving problems, secure multi-party computation is e...Numerous privacy-preserving issues have emerged along with the fast development of Internet, both in theory and in real-life applications. To settle the privacy-preserving problems, secure multi-party computation is essential and critical. In this paper, we have solved two problems regarding to how to determine the position relation between points and curves without revealing any private information. Two protocols have been proposed in order to solve the problems in different conditions. In addition, some building blocks have been developed, such as scalar product protocol, so that we can take advantage of them to settle the privacy-preserving computational geometry problems which are a kind of special secure multi-party computation problems. Moreover, oblivious transfer and power series expansion serve as significant parts in our protocols. Analyses and proofs have also been given to argue our conclusion.展开更多
Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. The...Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. These derived equations are universal, in which extension, flexure, and shear deformations are all included, and can be degen- erated to a number of special cases, e.g., extensional motion, coupled extensional and flexural motion with shear deformations, and elementary flexural motion without shear deformations. As a typical application, the extensional motion of a ZnO beam is analyzed sequentially. It is revealed that semi-conduction has a great effect on the performance of the piezoelectric semiconductor beam, including static deformations and dynamic be- haviors. A larger initial carrier density will evidently lead to a lower resonant frequency and a smaller displacement response, which is a little similar to the dissipative effect. Both the derived approximate equations and the corresponding qualitative analysis are general and widely applicable, which can clearly interpret the inner physical mechanism of the semiconductor in the piezoelectrics and provide theoretical guidance for further experimental design.展开更多
A general technique to obtain simple analytic approximations for the first kind of modified Bessel functions. The general procedure is shown, and the parameter determination is explained through the applications to th...A general technique to obtain simple analytic approximations for the first kind of modified Bessel functions. The general procedure is shown, and the parameter determination is explained through the applications to this particular case I1/6(x)and I1/7(x). In this way, it shows how to apply the technique to any particular orderν, in order to obtain an approximation valid for any positive value of the variable x. In the present method power series and asymptotic expansion are simultaneously used. The technique is an extension of the multipoint quasirational approximation method, MPQA. The main idea is to look for a bridge function between the power and asymptotic expansion of the I1/6(x), and similar procedure for I1/7(x). To perform this, rational functions are combined with hyperbolic ones and fractional powers. The number of parameters to be determined for each case is four. The maximum relative errors are 0.0049 for ν=1/6, and 0.0047 for ν=7. However, these relative errors decrease outside of the small region of the variables, wherein the maximum relative errors are reached. There is a clear advantage of this procedure compared with any other ones.展开更多
基金Project supported by the National Natural Science Foundation of China (No.50425926)
文摘To the serf-similar analytical solution of the Boussinesq equation of groundwater flow in a semi-infinite porous medium, when the hydraulic head at the boundary behaved like a power of time, Barenblatt obtained a power series solution. However, he listed only the first three coefficients and did not give the recurrent formula among the coefficients. A formal proof of convergence of the series did not appear in his works. In this paper, the recurrent formula for the coefficients is obtained by using the method of power series expansion, and the convergence of the series is proven. The results can be easily understood and used by engineers in the catchment hydrology and baseflow studies as well as to solve agricultural drainage problems.
文摘This paper presents the way to make expansion for the next form function: to the numerical series. The most widely used methods to solve this problem are Newtons Binomial Theorem and Fundamental Theorem of Calculus (that is, derivative and integral are inverse operators). The paper provides the other kind of solution, except above described theorems.
文摘Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.
文摘Probabilistic load flow(PLF)algorithm has been regained attention,because the large-scale wind power integration into the grid has increased the uncertainty of the stable and safe operation of the power system.The PLF algorithm is improved with introducing the power performance of double-fed induction generators(DFIGs)for wind turbines(WTs)under the constant power factor control and the constant voltage control in this paper.Firstly,the conventional Jacobian matrix of the alternating current(AC)load flow model is modified,and the probability distributions of the active and reactive powers of the DFIGs are derived by combining the power performance of the DFIGs and the Weibull distribution of wind speed.Then,the cumulants of the state variables in power grid are obtained by improved PLF model and more accurate power probability distributions.In order to generate the probability density function(PDF)of the nodal voltage,Gram-Charlier,Edgeworth and Cornish-Fisher expansions based on the cumulants are applied.Finally,the effectiveness and accuracy of the improved PLF algorithm is demonstrated in the IEEE 14-RTS system with wind power integration,compared with the results of Monte Carlo(MC)simulation using deterministic load flow calculation.
文摘Presented in this paper is a convergence theorem for a kind of composite power series expansions whose coefficients can be expressed by using Faa` di Bruno’s formula. A related problem is proposed as a remark, and a few examples are given as applications.
基金Supported by the National Natural Science Foundation of China (No. 61070189, 60673065)the National High Technology Development Program (No. 2008AA01Z419)
文摘Numerous privacy-preserving issues have emerged along with the fast development of Internet, both in theory and in real-life applications. To settle the privacy-preserving problems, secure multi-party computation is essential and critical. In this paper, we have solved two problems regarding to how to determine the position relation between points and curves without revealing any private information. Two protocols have been proposed in order to solve the problems in different conditions. In addition, some building blocks have been developed, such as scalar product protocol, so that we can take advantage of them to settle the privacy-preserving computational geometry problems which are a kind of special secure multi-party computation problems. Moreover, oblivious transfer and power series expansion serve as significant parts in our protocols. Analyses and proofs have also been given to argue our conclusion.
基金Project supported by the National Natural Science Foundation of China(Nos.11672223,11402187,and 51178390)the China Postdoctoral Science Foundation(No.2014M560762)the Fundamental Research Funds for the Central Universities of China(No.xjj2015131)
文摘Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. These derived equations are universal, in which extension, flexure, and shear deformations are all included, and can be degen- erated to a number of special cases, e.g., extensional motion, coupled extensional and flexural motion with shear deformations, and elementary flexural motion without shear deformations. As a typical application, the extensional motion of a ZnO beam is analyzed sequentially. It is revealed that semi-conduction has a great effect on the performance of the piezoelectric semiconductor beam, including static deformations and dynamic be- haviors. A larger initial carrier density will evidently lead to a lower resonant frequency and a smaller displacement response, which is a little similar to the dissipative effect. Both the derived approximate equations and the corresponding qualitative analysis are general and widely applicable, which can clearly interpret the inner physical mechanism of the semiconductor in the piezoelectrics and provide theoretical guidance for further experimental design.
文摘A general technique to obtain simple analytic approximations for the first kind of modified Bessel functions. The general procedure is shown, and the parameter determination is explained through the applications to this particular case I1/6(x)and I1/7(x). In this way, it shows how to apply the technique to any particular orderν, in order to obtain an approximation valid for any positive value of the variable x. In the present method power series and asymptotic expansion are simultaneously used. The technique is an extension of the multipoint quasirational approximation method, MPQA. The main idea is to look for a bridge function between the power and asymptotic expansion of the I1/6(x), and similar procedure for I1/7(x). To perform this, rational functions are combined with hyperbolic ones and fractional powers. The number of parameters to be determined for each case is four. The maximum relative errors are 0.0049 for ν=1/6, and 0.0047 for ν=7. However, these relative errors decrease outside of the small region of the variables, wherein the maximum relative errors are reached. There is a clear advantage of this procedure compared with any other ones.