To deal with the problem of how to control the interior ballistic stability in the bulk-loaded liquid propellant gun, the expansion and mixing process of the twin combustion-gas jets with high temperature and pressure...To deal with the problem of how to control the interior ballistic stability in the bulk-loaded liquid propellant gun, the expansion and mixing process of the twin combustion-gas jets with high temperature and pressure in a liquid medium is studied in the cylindrical filling liquid chamber. A series of the jet expansion shapes is obtained by using a high-speed photographic system. The influences of the jet pressure on the jet expansion shape are discussed. Based on the experiments, the three-dimensional mathematical model is established. The expansion processes of the twin gas jets in the liquid medium are simulated by means of fluent to get the pressure, density, temperature, velocity contours and evolutionary process of vortices. Results show that the jet external out-line and tops are all irregular. The Kelvin-Helmholtz instability is shown in the whole expansion process. The numerical simulation results of the axial displacement of the twin gas jets in liquid agree well with the experiment.展开更多
基金Project support by the National Science Foundation of China(Grant No.50776048)
文摘To deal with the problem of how to control the interior ballistic stability in the bulk-loaded liquid propellant gun, the expansion and mixing process of the twin combustion-gas jets with high temperature and pressure in a liquid medium is studied in the cylindrical filling liquid chamber. A series of the jet expansion shapes is obtained by using a high-speed photographic system. The influences of the jet pressure on the jet expansion shape are discussed. Based on the experiments, the three-dimensional mathematical model is established. The expansion processes of the twin gas jets in the liquid medium are simulated by means of fluent to get the pressure, density, temperature, velocity contours and evolutionary process of vortices. Results show that the jet external out-line and tops are all irregular. The Kelvin-Helmholtz instability is shown in the whole expansion process. The numerical simulation results of the axial displacement of the twin gas jets in liquid agree well with the experiment.