期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Spatial and Temporal Dynamics of Surface Water in China from the 1980s to 2015 Based on Remote Sensing Monitoring
1
作者 SONG Song CAO Zheng +1 位作者 WU Zhifeng CHUAI Xiaowei 《Chinese Geographical Science》 SCIE CSCD 2022年第1期174-188,共15页
Climate change and human interference play significant roles on dynamic of water body abundance,and drive related hydrological,biochemical and social/economic processes.Documenting and monitoring surface water area wi... Climate change and human interference play significant roles on dynamic of water body abundance,and drive related hydrological,biochemical and social/economic processes.Documenting and monitoring surface water area with high resolution multi-temporal satellite imagery provide new perspective to evaluate the dynamics of surface water area,especially in continental and global scale.In this study,based on the Landsat images from 1980 s to 2015,we surveyed the spatial and temporal variation of surface water area,including rivers,lakes and reservoirs,in 10-yr temporal slice across China.Furthermore,the driving forces of the variation has been identified to reveal the interaction of water bodies and the changing environment.The results show that,the water surface area expanded over all three decades with strong spatial and temporal difference,despite the drier and warmer climate background;although lakes comprise the largest portion of the surface water area,the highest contributor of surface water expansion was new constructed reservoir located in the densely populated region;climatic parameters alteration,like precipitation and temperature,resulted in the water surface expansion in the northwestern basin by growing water input linked with rain and glacier melting;in the rest part of China,rise of water surface area was predominately attributed to human relocation of water resource,which yielded more new water storage area than the disappeared water body caused by less precipitation and stronger evapotranspiration.The conclusions highlight the integrative water resource management,especially in water conservation and restoration. 展开更多
关键词 temporal dynamics spatial variation surface water area expansion driving forces
下载PDF
A polynomial chaos expansion method for the uncertain acoustic field in shallow water 被引量:3
2
作者 CHENG Guangli ZHANG Mingmin 《Chinese Journal of Acoustics》 2013年第4期391-399,共9页
To obtain a universal model solving the uncertain acoustic field in shallow water, a non-intrusive model coupled polynomial chaos expansion (PCE) method with Helmholtz equa- tion is established, in which the polynom... To obtain a universal model solving the uncertain acoustic field in shallow water, a non-intrusive model coupled polynomial chaos expansion (PCE) method with Helmholtz equa- tion is established, in which the polynomial coefficients are solved by probabilistic collocation method (PCM). For the cases of Pekeris waveguide which have uncertainties in depth of water column, in both sound speed profile and depth of water column, and for the case of thermocline with lower limit depth uncertain, probability density functions (PDF) of transmission loss (TL) are calculated. The results show that the proposed model is universal for the acoustic propa- gation codes with high computational efficiency and accuracy, and can be applied to study the uncertainty of acoustic propagation in the shallow water en^-ironment with multiple parameters uncertain. 展开更多
关键词 PCE A polynomial chaos expansion method for the uncertain acoustic field in shallow water
原文传递
Statistical analysis of surface hydrography and circulation variations in northern South China Sea
3
作者 吴玲娟 崔茂常 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2005年第4期383-392,共10页
To study the variations in surface hydrography and circulation in northern South China Sea (NSCS), rotated empirical orthogonal function (REOF) and extended associate pattern analysis (EAPA) are used with daily sea su... To study the variations in surface hydrography and circulation in northern South China Sea (NSCS), rotated empirical orthogonal function (REOF) and extended associate pattern analysis (EAPA) are used with daily sea surface salinity (SSS), sea surface temperature (SST) and sea surface height (SSH) datasets cover- ing 1 126 days from American Navy Experimental Real-Time East Asian Seas Ocean Nowcast System in this paper. Results show that in summer, the SCS Diluted Water Expansion (SDWE) is the most dominant factor con- trolling SSS variations in the NSCS. The remarkable SDWE usually begins in early July, reaches its maximum in middle August and weakens in late September. In summer flourishing period, its low saline core is just limited between 21°N and 22°N because of strong surface anomalous anticyclonic circulation in the NSCS. In early or late stage, the anomalous anticyclonic circulation becomes weak or turns into cyclonic one, thus the weak SCS diluted water can disperse. And its influence on the SSS variations has obviously decreased. The Kuroshio intrusion is the second controlling factor, and it has the almost opposite seasonal or intraseasonal oscillations and spatial charac- teristics to the SDWE. Winter Kuroshio Intrusion (WKI) begins in early November and lasts about three months. Intraseasonal Kuroshio Intrusion (IKI) takes place at any seasons. The westward Ekman transport produced by the north anomaly of East Asia Monsoon (EAM) pushes warmer and more saline seawater into the NSCS through the Bashi Strait and seems to decide the intensity of seasonal and intraseasonal Kuroshio intrusions. 展开更多
关键词 VARIATIONS SCS diluted water expansion (SDWE) intraseasonal Kuroshio intrusion (IKI) winter Kuroshio intrusion (WKI) empirical orthogonal function (REOF) extended associate pattern analysis (EAPA)
下载PDF
High-pressure capacity expansion and water injection mechanism and indicator curve model for fractured-vuggy carbonate reservoirs
4
作者 Lixin Chen Chengzao Jia +6 位作者 Rujie Zhang Ping Yue Xujian Jiang Junfang Wang Zhou Su Yun Xiao Yuan Lv 《Petroleum》 EI 2024年第3期511-519,共9页
Water injection for oil displacement is one of the most effective ways to develop fractured-vuggy carbonate reservoirs.With the increase in the number of rounds of water injection,the development effect gradually fail... Water injection for oil displacement is one of the most effective ways to develop fractured-vuggy carbonate reservoirs.With the increase in the number of rounds of water injection,the development effect gradually fails.The emergence of high-pressure capacity expansion and water injection technology allows increased production from old wells.Although high-pressure capacity expansion and water injection technology has been implemented in practice for nearly 10 years in fractured-vuggy reservoirs,its mechanism remains unclear,and the water injection curve is not apparent.In the past,evaluating its effect could only be done by measuring the injection-production volume.In this study,we analyze the mechanism of high-pressure capacity expansion and water injection.We propose a fluid exchange index for high-pressure capacity expansion and water injection and establish a discrete model suitable for high-pressure capacity expansion and water injection curves in fractured-vuggy reservoirs.We propose the following mechanisms:replenishing energy,increasing energy,replacing energy,and releasing energy.The above mechanisms can be identified by the high-pressure capacity expansion and water injection curve of the well HA6X in the Halahatang Oilfield in the Tarim Basin.By solving the basic model,the relative errors of Reservoirs I and II are found to be 1.9%and 1.5%,respectively,and the application of field examples demonstrates that our proposed high-pressure capacity expansion and water injection indicator curve is reasonable and reliable.This research can provide theoretical support for high-pressure capacity expansion and water injection technology in fracture-vuggy carbonate reservoirs. 展开更多
关键词 Fractured-vuggy carbonate reservoirs High-pressure capacity expansion and water injection Mechanism water injection indicator curve
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部