Biomaterial will shrink during the drying process. The characteristics of shrinkage and rehydration of fresh peas were studied. Drying curves, shrinkage and rehydration curves of peas without seed coats and whole peas...Biomaterial will shrink during the drying process. The characteristics of shrinkage and rehydration of fresh peas were studied. Drying curves, shrinkage and rehydration curves of peas without seed coats and whole peas were compared. In addition, different volumetric shrinkage coefficients were obtained and discussed. The results show that seed coats resist moisture movement not only from inside to outside but also from outside to inside during different drying conditions. During a seed’s drying process, the drying curve is similar to the shrinkage curve. The higher the heat flux is, the less drying time is needed, and in the meantime, volume would shrink more and more intensively. Dried media will break easily at high heat flux. When we create a drying regime, both drying speed and the quality of dried media should be considered.展开更多
This laboratory study examines the potential use of an anionic polyacrylamide(PAM)-based material as an environmentally sustainable additive for the stabilization of an expansive soil from South Australia.The experime...This laboratory study examines the potential use of an anionic polyacrylamide(PAM)-based material as an environmentally sustainable additive for the stabilization of an expansive soil from South Australia.The experimental program consisted of consistency limits,sediment volume,compaction and oedometer cyclic swell-shrink tests,performed using distilled water and four different PAM-to-water solutions of P_(D)=0.1 g/L,0.2 g/L,0.4 g/L and 0.6 g/L as the mixing liquids.Overall,the relative swelling and shrinkage strains were found to decrease with increasing number of applied swell-shrink cycles,with an‘elastic equilibrium’condition achieved on the conclusion of four cycles.The propensity for swelling/shrinkage potential reduction(for any given cycle)was found to be in favor of increasing the PAM dosage up to P_(D)=0.2 g/L,beyond which the excess PAM molecules self-associate as aggregates,thereby functioning as a lubricant instead of a flocculant;this critical dosage was termed‘maximum flocculation dosage’(MFD).The MFD assertion was discussed and validated using the consistency limits and sediment volume properties,both exhibiting only marginal variations beyond the identified MFD of P_(D)=0.2 g/L.The accumulated axial strain progressively transitioned from‘expansive’for the unamended soil to an ideal‘neutral’state at the MFD,while higher dosages demonstrated undesirable‘contractive’states.展开更多
The shrinkage characteristics tics of expansive concrete filled steel tube (CFST) are analyzed, Cold shrinkage, creep and autogenous shrinkage are considered as the main reasons of causing CFST contraction. In accorda...The shrinkage characteristics tics of expansive concrete filled steel tube (CFST) are analyzed, Cold shrinkage, creep and autogenous shrinkage are considered as the main reasons of causing CFST contraction. In accordance with the shrinkage characteristics of expansive CFST, a kind of energy-stored delayed expansive agent is exploited, which can not only compensate the shrinkage of the core concrete in every stages, but also make CFST expand according to the delayed expansion mechanism. As the result, the prestress loss weill be reduced and expansive energy will be utilized effectively.展开更多
Oligodendroglial lineage cells go through a series of morphological changes prior to myelination.Sufficient cell process outgrowth and mem brane expansion are required to meet the needs of axon-wrapping and myelin seg...Oligodendroglial lineage cells go through a series of morphological changes prior to myelination.Sufficient cell process outgrowth and mem brane expansion are required to meet the needs of axon-wrapping and myelin segment formation,but which are hard to achieve maldevelopment and remyelination.Quetiapine,an atypical antipsychotic drug,has been proved to promote oligodendrocyte(OL)differentiation and(re)myelination,pending detailed effects and regulatory mechanism.In present study,we showed that quetiapine promoted OL differentiation and myelin segment formation in a short period of treatment,enhanced OL processes outgrowth and membrane expansion,and provided detail evidence that quetiapine relocated nuclear transcription factor Olig1 to cytosol,in which highly correlating with OL morphological transformation.To uncover the underlying mechanism,informatics analyses,including docking and MD studies,were executed.GPR17 was one of the most likely candidates.GPR17 is restricted to oligodendroglial lineage cells in an up-and-down expression pattern and acts as a developmental control timer.展开更多
Residual carbon on the inner surface of copper tubes is known to be a cause of pitting corrosion. We showed previously that the rapid filling test was useful to evaluate the pitting corrosion resistance of copper tube...Residual carbon on the inner surface of copper tubes is known to be a cause of pitting corrosion. We showed previously that the rapid filling test was useful to evaluate the pitting corrosion resistance of copper tubes. Immersion tests using the rapid evaluation test solution showed that corrosion occurs on the entire surface of copper tubes with low residual carbon amounts, while those with high residual carbon amounts show pitting corrosion. Therefore, it is necessary to improve the corrosion resistance of copper tubes with high residual carbon amount, which are expected to undergo pitting corrosion. As pitting corrosion occurs when anodes are locally concentrated on part of the metal surface, it has been suggested that anodes be dispersed over the entire surface by the processing of the metal surface. Metal processing methods have various purposes, including changing the shape and properties of metals, and in this case, leading to desirable surface properties (such as expansion and drawing processes). Here, we focused on the expansion process and its effects on corrosion resistance of copper tubes. The results showed that hydraulic expansion has a significant effect on the inner copper surface by improving corrosion resistance as the anode area increases.展开更多
A new type of concrete expansion agent has been successfully developed for the first time in the world by utilizing an industrial waste residue soda residue and an industrial wasteliquor.Adding 3%-6% of the agent int...A new type of concrete expansion agent has been successfully developed for the first time in the world by utilizing an industrial waste residue soda residue and an industrial wasteliquor.Adding 3%-6% of the agent into Portland cement enables a shrinkage compensating concrete to be prepared.Mortar and concrete containing this expansion agent have better shrinkage compensating and mechanical properties.The raw materials component,production process,technical properties,micro analysis of mortar made with this expansion agent,mechanism of expansion and research results are described in this article.The experimental results show that the new type of concrete expansion agent accords with the standard and its main mineral component is xCaO ySO 3 zAl 2O 3.展开更多
Circulating fluidized bed fly ash(CFBFA)is a solid waste product from circulating fluidized bed(CFB)boilers in power plants,and the storage of CFBFA is increasingly become an environmental problem.Previous scholars ha...Circulating fluidized bed fly ash(CFBFA)is a solid waste product from circulating fluidized bed(CFB)boilers in power plants,and the storage of CFBFA is increasingly become an environmental problem.Previous scholars have made contributions to improve the resource utilization of CFBFA.Especially,ecological cement is prepared by CFBFA,which is more conducive to its large-scale utilization.In recent years,a lot of effort has been paid to improve the properties of ecological cement containing CFBFA.In this work,the physicochemical properties of CFBFA are introduced,and recent research progress on the mechanical,expansion,and rheological properties of CFBFA based ecological cement(CEC)is extensively reviewed.The problem of over-expansion of f-CaO is summarized,which limits the scale application of CFBFA in ecological cement.Hence,the challenge for f-CaO in CFBFA to compensate for cement volume shrinkage is proposed,which is beneficial to the utilization of CFBFA in ecological cement,and the reduction of CO_(2) emissions from the cement industry.In addition,the environmental performance,durability,and economy of CEC should be valued in future research,especially the environmental performance,because the CFBFA contains heavy metals,such as Cr,As,which may pollute groundwater.展开更多
This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochas...This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochastic process and then a correlated matrix decomposition technique, which transforms a correlated random vector into a vector of standard uncorrelated random variables, is used to complete a double orthogonal decomposition of the stochastic processes. Considering the relationship between the Hartley transform and Fourier transform of a real-valued function, it is suggested that the first orthogonal expansion in the above process is carried out using the Hartley basis function instead of the trigonometric basis function in practical applications. The seismic ground motion is investigated using the above method. In order to capture the main probabilistic characteristics of the seismic ground motion, it is proposed to directly carry out the orthogonal expansion of the seismic displacements. The case study shows that the proposed method is feasible to represent the seismic ground motion with only a few random variables. In the second part of the paper, the probability density evolution method (PDEM) is employed to study the stochastic response of nonlinear structures subjected to earthquake excitations. In the PDEM, a completely uncoupled one-dimensional partial differential equation, the generalized density evolution equation, plays a central role in governing the stochastic seismic responses of the nonlinear structure. The solution to this equation will yield the instantaneous probability density function of the responses. Computational algorithms to solve the probability density evolution equation are described. An example, which deals with a nonlinear frame structure subjected to stochastic ground motions, is illustrated to validate the above approach.展开更多
To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm co...To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm constraint to promote its application for sparse system. Second, we use the shrinkage denoising method to improve its track ability. Third, we adopt the widely linear processing to take advantage of the non-circular properties of communication signals. Last, to reduce the high computational complexity and make it easy to implemented, we utilize the dichotomous coordinate descent(DCD) iterations and the parallel processing to deal with the tapweight update in the proposed algorithm. To verify the convergence condition of the proposed algorithm, we also analyze its steadystate behavior. Several simulation are done and results show that the proposed algorithm can achieve a faster convergence speed and a lower steady-state misalignment than similar APA-type algorithm. When apply the proposed algorithm in the decision feedback equalizer(DFE), the bite error rate(BER) decreases obviously.展开更多
The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relations...The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relationships between the operating conditions and the LPVE in order to develop a practical method for determining the operation conditions and selecting an organic solvent for SAS process. The PR equation of state with vdW-1 mixing rule is used to calculate the LPVE for CO2/toluene, CO2/acetone and CO2/ethyl acetate systems, and the results show that the LPVE for each CO2/organic solvent system decreases as the temperature increases. The relationship between the LPVE and the solubility of CO2 in the liquid phase for CO2/organic solvent systems is investigated, and the results show that the LPVE is determined directly by the solubility of CO2 in the liquid phase, xCO2, and can be related to xCO2 independently. No matter what system of CO2/organic solvent is and how different the temperature is, the LPVEs have little difference as long as the solubility of CO2 in the liquid phase, xCO2, keeps constant. The lower temperature is always favorable to the SAS process. The higher the solubility of CO2 in an organic solvent under certain operation condition, the more suitable it is to the SAS process.展开更多
This study developed a systematic decision-making process for water supply capacity expansion using the analytic hierarchy process. The decision-making criteria were categorized into environmental, economic, technical...This study developed a systematic decision-making process for water supply capacity expansion using the analytic hierarchy process. The decision-making criteria were categorized into environmental, economic, technical and socio-cultural aspects. Capacity expansion of three water resources (Kpong, Weija and Teshie plants) of Accra-Tema Metropolitan Area (Ghana) was studied as a test case. The research resulted in the environmental criterion with the highest priority weight (52.4%), followed by the economic (30.6%), technical (11.3%) and socio-cultural criteria (5.8%). The overall analysis ranked the Kpong plant with a score of 36.1% followed by the Weija and Teshie plants with scores 33.8% and 30.2%, respectively.展开更多
On the basis of the existing relation between the soil’s water content and its structural evolution, we elaborate a new analytical model allowing the analysis of the soil’s shrinkage curve according to the limits of...On the basis of the existing relation between the soil’s water content and its structural evolution, we elaborate a new analytical model allowing the analysis of the soil’s shrinkage curve according to the limits of its hydro-structural boundaries. This model was conducted on undisturbed clayey soil at Moulel-Bergui, Morocco.展开更多
This paper is concerned with the distributional properties of a median unbiased estimator of ARCH(0,1) coefficient. The exact distribution of the estimator can be easily derived, however its practical calculations a...This paper is concerned with the distributional properties of a median unbiased estimator of ARCH(0,1) coefficient. The exact distribution of the estimator can be easily derived, however its practical calculations are too heavy to implement, even though the middle range of sample sizes. Since the estimator is shown to have asymptotic normality, asymptotic expansions for the distribution and the percentiles of the estimator are derived as the refinements. Accuracies of expansion formulas are evaluated numerically, and the results of which show that we can effectively use the expansion as a fine approximation of the distribution with rapid calculations. Derived expansion are applied to testing hypothesis of stationarity, and an implementation for a real data set is illustrated.展开更多
To describe the dynamic cracking process of the CLT vertical layer,the correlation between a load-displacement curve,specimen cracking,and planar shear failure mechanism of the CLT were explored.A three-point bending ...To describe the dynamic cracking process of the CLT vertical layer,the correlation between a load-displacement curve,specimen cracking,and planar shear failure mechanism of the CLT were explored.A three-point bending test and an improved planar shear test are used to evaluate the shear performance of the CLT.In this study,the load-displacement curve is recorded,the experimental part is synchronized with the video,the dynamic process of cracking of the vertical layer is observed and analyzed throughout the test.From the load-displacement curve,the image characteristics of the initial cracking and the sudden increase of the cracking of the specimen are summar-ized.The description results of the whole dynamic process of the CLT vertical layer cracking are analyzed by pla-nar shear strength value,cracking phenomenon,and azimuth angle of cracking surface.The main conclusions show that the three-point bending test and the improved plain shear test can be used to test the plain shear strength of the CLT,with a difference of only 5.7%.The original crack and the new crack expansion account for 18.9%and 81.1%of the main cracking surface,respectively.And the vertical layer of the CLT specimen under three-point bending has three cracking morphologies,such as radial shake,ring shake,neither along with the radial shake nor along with the ring shake.The azimuth angle of the cracking surface of the CLT vertical layer under planar shear is quite consistent with the first main plane azimuth of the vertical layer of the CLT specimens under the three-point bending test and the shearing test.The shape in the cracking direction of the left half-span or the right half-span of the vertical layer of the specimen is similar to the Chinese character eight.展开更多
Precise temperature control to decrease movements in positions due to thermal expansion of work pieces is required in the manufacturing processes to achieve nanometer-order accuracy. We analytically examined the effec...Precise temperature control to decrease movements in positions due to thermal expansion of work pieces is required in the manufacturing processes to achieve nanometer-order accuracy. We analytically examined the effect of a method of minimizing movements in positions on a plate with varying generation of noise-heat. Control by monitoring temperature changes caused larger movements in positions than that without control because maximum change in temperature occurred at non-monitoring positions. The best method of minimizing movements in positions due to thermal expansion of a plate with varying generation of noise-heat was model predictive control by the monitoring movements and distributed temperature changes in the control heater according to the effects of the generation of noise-heat. The maximum movement in positions was 6 nm, which was 1/4 times of that without control.展开更多
The phenomena of shrinkage and swelling of clay induce damage to housing structures every year. Precipitation, climatic changes and drought are the cause of wall cracks due to subsidence or swelling of the supporting ...The phenomena of shrinkage and swelling of clay induce damage to housing structures every year. Precipitation, climatic changes and drought are the cause of wall cracks due to subsidence or swelling of the supporting soil. This movement alters the balance between the soil and the structures. To explain this defection, the soil is made up of three elements: the solid, the liquid and the gas. Sometimes in a natural way or following a human intervention, one of these elements undergoes an abnormal variation that causes the loss of the balance between land and works. It is in this sense that this article deals on the one hand with the factors of predisposition and triggering of the phenomena of shrinkage-swelling of the clay soils of Diamniadio and on the other hand, the factors of aggravation linked to the lithological heterogeneity and the variation in the thickness of the layers susceptible to shrinkage-swelling. The studies carried out have enabled a deeper understanding of the behavior of expansive soils following their interactions with climate, vegetation, hydrology, hydrogeology, constructions among others, but also the influence of lateral and vertical variations of fine soil facies.展开更多
In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embank...In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embankment section were simulated by ABAQUS. The simulation results indicate that the matric suction was a concave distribution on top of the expansive soil foundation and that it induced differential deformation of foundation and embankment. The peaks of tensile stress on top of the embankment are not located at a fixed site, but gradually move towards the shoulder following the evaporation duration. When the evaporation intensity is larger, the peak of tensile stress on top of embankment increases at a faster rate following the evaporation duration,and its location is closer to the shoulder. The thicker expansive soil layer helps the peaks of tensile stress to reach the critical tensile stress quickly, but the embankment cannot crack when the expansive soil layer is no more than 1.5m after 30d soil surface evaporation; the higher the embankment, the smaller the peak of tensile stress occurring on top of the highway embankment, and its location will be further away from the shoulder. Therefore, a higher embankment constructed on a thinner expansive soil layer can reduce the crack generation within the highway embankment.展开更多
Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosi...Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosity, while reducing the secondary dendritic arm spacing of a wheel casting during low-pressure die casting(LPDC) process, was taken as an example of such problem. A commercial simulation software Pro CASTTM was applied to simulate the filling and solidification processes. Additionally, a program for integrating the optimization algorithm with numerical simulation was developed based on SiPESC. By setting pouring temperature and filling pressure as design variables, shrinkage porosity and secondary dendritic arm spacing as objective variables, the multi-objective optimization of minimum volume of shrinkage porosity and secondary dendritic arm spacing was achieved. The optimal combination of AZ91 D wheel casting was: pouring temperature 689 °C and filling pressure 6.5 kPa. The predicted values decreased from 4.1% to 2.1% for shrinkage porosity, and 88.5 μm to 81.2 μm for the secondary dendritic arm spacing. The optimal results proved the feasibility of the developed program in multi-objective optimization.展开更多
文摘Biomaterial will shrink during the drying process. The characteristics of shrinkage and rehydration of fresh peas were studied. Drying curves, shrinkage and rehydration curves of peas without seed coats and whole peas were compared. In addition, different volumetric shrinkage coefficients were obtained and discussed. The results show that seed coats resist moisture movement not only from inside to outside but also from outside to inside during different drying conditions. During a seed’s drying process, the drying curve is similar to the shrinkage curve. The higher the heat flux is, the less drying time is needed, and in the meantime, volume would shrink more and more intensively. Dried media will break easily at high heat flux. When we create a drying regime, both drying speed and the quality of dried media should be considered.
基金funded by the Australian Research Council(ARC),Project No.DP140103004。
文摘This laboratory study examines the potential use of an anionic polyacrylamide(PAM)-based material as an environmentally sustainable additive for the stabilization of an expansive soil from South Australia.The experimental program consisted of consistency limits,sediment volume,compaction and oedometer cyclic swell-shrink tests,performed using distilled water and four different PAM-to-water solutions of P_(D)=0.1 g/L,0.2 g/L,0.4 g/L and 0.6 g/L as the mixing liquids.Overall,the relative swelling and shrinkage strains were found to decrease with increasing number of applied swell-shrink cycles,with an‘elastic equilibrium’condition achieved on the conclusion of four cycles.The propensity for swelling/shrinkage potential reduction(for any given cycle)was found to be in favor of increasing the PAM dosage up to P_(D)=0.2 g/L,beyond which the excess PAM molecules self-associate as aggregates,thereby functioning as a lubricant instead of a flocculant;this critical dosage was termed‘maximum flocculation dosage’(MFD).The MFD assertion was discussed and validated using the consistency limits and sediment volume properties,both exhibiting only marginal variations beyond the identified MFD of P_(D)=0.2 g/L.The accumulated axial strain progressively transitioned from‘expansive’for the unamended soil to an ideal‘neutral’state at the MFD,while higher dosages demonstrated undesirable‘contractive’states.
基金Funded by The Transportation Ministry,P. R. China.
文摘The shrinkage characteristics tics of expansive concrete filled steel tube (CFST) are analyzed, Cold shrinkage, creep and autogenous shrinkage are considered as the main reasons of causing CFST contraction. In accordance with the shrinkage characteristics of expansive CFST, a kind of energy-stored delayed expansive agent is exploited, which can not only compensate the shrinkage of the core concrete in every stages, but also make CFST expand according to the delayed expansion mechanism. As the result, the prestress loss weill be reduced and expansive energy will be utilized effectively.
文摘Oligodendroglial lineage cells go through a series of morphological changes prior to myelination.Sufficient cell process outgrowth and mem brane expansion are required to meet the needs of axon-wrapping and myelin segment formation,but which are hard to achieve maldevelopment and remyelination.Quetiapine,an atypical antipsychotic drug,has been proved to promote oligodendrocyte(OL)differentiation and(re)myelination,pending detailed effects and regulatory mechanism.In present study,we showed that quetiapine promoted OL differentiation and myelin segment formation in a short period of treatment,enhanced OL processes outgrowth and membrane expansion,and provided detail evidence that quetiapine relocated nuclear transcription factor Olig1 to cytosol,in which highly correlating with OL morphological transformation.To uncover the underlying mechanism,informatics analyses,including docking and MD studies,were executed.GPR17 was one of the most likely candidates.GPR17 is restricted to oligodendroglial lineage cells in an up-and-down expression pattern and acts as a developmental control timer.
文摘Residual carbon on the inner surface of copper tubes is known to be a cause of pitting corrosion. We showed previously that the rapid filling test was useful to evaluate the pitting corrosion resistance of copper tubes. Immersion tests using the rapid evaluation test solution showed that corrosion occurs on the entire surface of copper tubes with low residual carbon amounts, while those with high residual carbon amounts show pitting corrosion. Therefore, it is necessary to improve the corrosion resistance of copper tubes with high residual carbon amount, which are expected to undergo pitting corrosion. As pitting corrosion occurs when anodes are locally concentrated on part of the metal surface, it has been suggested that anodes be dispersed over the entire surface by the processing of the metal surface. Metal processing methods have various purposes, including changing the shape and properties of metals, and in this case, leading to desirable surface properties (such as expansion and drawing processes). Here, we focused on the expansion process and its effects on corrosion resistance of copper tubes. The results showed that hydraulic expansion has a significant effect on the inner copper surface by improving corrosion resistance as the anode area increases.
文摘A new type of concrete expansion agent has been successfully developed for the first time in the world by utilizing an industrial waste residue soda residue and an industrial wasteliquor.Adding 3%-6% of the agent into Portland cement enables a shrinkage compensating concrete to be prepared.Mortar and concrete containing this expansion agent have better shrinkage compensating and mechanical properties.The raw materials component,production process,technical properties,micro analysis of mortar made with this expansion agent,mechanism of expansion and research results are described in this article.The experimental results show that the new type of concrete expansion agent accords with the standard and its main mineral component is xCaO ySO 3 zAl 2O 3.
基金financially supported by the National Natural Science Foundation of China(Nos.52074035 and 52008229)the Key Technologies Research and Develo pment Program,China(No.2020YFB0606200)。
文摘Circulating fluidized bed fly ash(CFBFA)is a solid waste product from circulating fluidized bed(CFB)boilers in power plants,and the storage of CFBFA is increasingly become an environmental problem.Previous scholars have made contributions to improve the resource utilization of CFBFA.Especially,ecological cement is prepared by CFBFA,which is more conducive to its large-scale utilization.In recent years,a lot of effort has been paid to improve the properties of ecological cement containing CFBFA.In this work,the physicochemical properties of CFBFA are introduced,and recent research progress on the mechanical,expansion,and rheological properties of CFBFA based ecological cement(CEC)is extensively reviewed.The problem of over-expansion of f-CaO is summarized,which limits the scale application of CFBFA in ecological cement.Hence,the challenge for f-CaO in CFBFA to compensate for cement volume shrinkage is proposed,which is beneficial to the utilization of CFBFA in ecological cement,and the reduction of CO_(2) emissions from the cement industry.In addition,the environmental performance,durability,and economy of CEC should be valued in future research,especially the environmental performance,because the CFBFA contains heavy metals,such as Cr,As,which may pollute groundwater.
基金National Natural Science Foundation of China for Innovative Research Groups Under Grant No.50321803 & 50621062National Natural Science Foundation of China Under Grant No.50808113 & 10872148
文摘This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochastic process and then a correlated matrix decomposition technique, which transforms a correlated random vector into a vector of standard uncorrelated random variables, is used to complete a double orthogonal decomposition of the stochastic processes. Considering the relationship between the Hartley transform and Fourier transform of a real-valued function, it is suggested that the first orthogonal expansion in the above process is carried out using the Hartley basis function instead of the trigonometric basis function in practical applications. The seismic ground motion is investigated using the above method. In order to capture the main probabilistic characteristics of the seismic ground motion, it is proposed to directly carry out the orthogonal expansion of the seismic displacements. The case study shows that the proposed method is feasible to represent the seismic ground motion with only a few random variables. In the second part of the paper, the probability density evolution method (PDEM) is employed to study the stochastic response of nonlinear structures subjected to earthquake excitations. In the PDEM, a completely uncoupled one-dimensional partial differential equation, the generalized density evolution equation, plays a central role in governing the stochastic seismic responses of the nonlinear structure. The solution to this equation will yield the instantaneous probability density function of the responses. Computational algorithms to solve the probability density evolution equation are described. An example, which deals with a nonlinear frame structure subjected to stochastic ground motions, is illustrated to validate the above approach.
基金supported by the National Natural Science Foundation of China (Grant No. 61471138, 50909029 and 61531012)Program of International S\&T Cooperation (Grant No. 2013DFR20050)+1 种基金the Defense Industrial Technology Development Program (Grant No. B2420132004)the Acoustic Science and Technology Laboratory (2014)
文摘To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm constraint to promote its application for sparse system. Second, we use the shrinkage denoising method to improve its track ability. Third, we adopt the widely linear processing to take advantage of the non-circular properties of communication signals. Last, to reduce the high computational complexity and make it easy to implemented, we utilize the dichotomous coordinate descent(DCD) iterations and the parallel processing to deal with the tapweight update in the proposed algorithm. To verify the convergence condition of the proposed algorithm, we also analyze its steadystate behavior. Several simulation are done and results show that the proposed algorithm can achieve a faster convergence speed and a lower steady-state misalignment than similar APA-type algorithm. When apply the proposed algorithm in the decision feedback equalizer(DFE), the bite error rate(BER) decreases obviously.
基金Supported by the National Nature Science Foundation of China (No. 20176003)
文摘The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relationships between the operating conditions and the LPVE in order to develop a practical method for determining the operation conditions and selecting an organic solvent for SAS process. The PR equation of state with vdW-1 mixing rule is used to calculate the LPVE for CO2/toluene, CO2/acetone and CO2/ethyl acetate systems, and the results show that the LPVE for each CO2/organic solvent system decreases as the temperature increases. The relationship between the LPVE and the solubility of CO2 in the liquid phase for CO2/organic solvent systems is investigated, and the results show that the LPVE is determined directly by the solubility of CO2 in the liquid phase, xCO2, and can be related to xCO2 independently. No matter what system of CO2/organic solvent is and how different the temperature is, the LPVEs have little difference as long as the solubility of CO2 in the liquid phase, xCO2, keeps constant. The lower temperature is always favorable to the SAS process. The higher the solubility of CO2 in an organic solvent under certain operation condition, the more suitable it is to the SAS process.
文摘This study developed a systematic decision-making process for water supply capacity expansion using the analytic hierarchy process. The decision-making criteria were categorized into environmental, economic, technical and socio-cultural aspects. Capacity expansion of three water resources (Kpong, Weija and Teshie plants) of Accra-Tema Metropolitan Area (Ghana) was studied as a test case. The research resulted in the environmental criterion with the highest priority weight (52.4%), followed by the economic (30.6%), technical (11.3%) and socio-cultural criteria (5.8%). The overall analysis ranked the Kpong plant with a score of 36.1% followed by the Weija and Teshie plants with scores 33.8% and 30.2%, respectively.
文摘On the basis of the existing relation between the soil’s water content and its structural evolution, we elaborate a new analytical model allowing the analysis of the soil’s shrinkage curve according to the limits of its hydro-structural boundaries. This model was conducted on undisturbed clayey soil at Moulel-Bergui, Morocco.
文摘This paper is concerned with the distributional properties of a median unbiased estimator of ARCH(0,1) coefficient. The exact distribution of the estimator can be easily derived, however its practical calculations are too heavy to implement, even though the middle range of sample sizes. Since the estimator is shown to have asymptotic normality, asymptotic expansions for the distribution and the percentiles of the estimator are derived as the refinements. Accuracies of expansion formulas are evaluated numerically, and the results of which show that we can effectively use the expansion as a fine approximation of the distribution with rapid calculations. Derived expansion are applied to testing hypothesis of stationarity, and an implementation for a real data set is illustrated.
文摘To describe the dynamic cracking process of the CLT vertical layer,the correlation between a load-displacement curve,specimen cracking,and planar shear failure mechanism of the CLT were explored.A three-point bending test and an improved planar shear test are used to evaluate the shear performance of the CLT.In this study,the load-displacement curve is recorded,the experimental part is synchronized with the video,the dynamic process of cracking of the vertical layer is observed and analyzed throughout the test.From the load-displacement curve,the image characteristics of the initial cracking and the sudden increase of the cracking of the specimen are summar-ized.The description results of the whole dynamic process of the CLT vertical layer cracking are analyzed by pla-nar shear strength value,cracking phenomenon,and azimuth angle of cracking surface.The main conclusions show that the three-point bending test and the improved plain shear test can be used to test the plain shear strength of the CLT,with a difference of only 5.7%.The original crack and the new crack expansion account for 18.9%and 81.1%of the main cracking surface,respectively.And the vertical layer of the CLT specimen under three-point bending has three cracking morphologies,such as radial shake,ring shake,neither along with the radial shake nor along with the ring shake.The azimuth angle of the cracking surface of the CLT vertical layer under planar shear is quite consistent with the first main plane azimuth of the vertical layer of the CLT specimens under the three-point bending test and the shearing test.The shape in the cracking direction of the left half-span or the right half-span of the vertical layer of the specimen is similar to the Chinese character eight.
文摘Precise temperature control to decrease movements in positions due to thermal expansion of work pieces is required in the manufacturing processes to achieve nanometer-order accuracy. We analytically examined the effect of a method of minimizing movements in positions on a plate with varying generation of noise-heat. Control by monitoring temperature changes caused larger movements in positions than that without control because maximum change in temperature occurred at non-monitoring positions. The best method of minimizing movements in positions due to thermal expansion of a plate with varying generation of noise-heat was model predictive control by the monitoring movements and distributed temperature changes in the control heater according to the effects of the generation of noise-heat. The maximum movement in positions was 6 nm, which was 1/4 times of that without control.
文摘The phenomena of shrinkage and swelling of clay induce damage to housing structures every year. Precipitation, climatic changes and drought are the cause of wall cracks due to subsidence or swelling of the supporting soil. This movement alters the balance between the soil and the structures. To explain this defection, the soil is made up of three elements: the solid, the liquid and the gas. Sometimes in a natural way or following a human intervention, one of these elements undergoes an abnormal variation that causes the loss of the balance between land and works. It is in this sense that this article deals on the one hand with the factors of predisposition and triggering of the phenomena of shrinkage-swelling of the clay soils of Diamniadio and on the other hand, the factors of aggravation linked to the lithological heterogeneity and the variation in the thickness of the layers susceptible to shrinkage-swelling. The studies carried out have enabled a deeper understanding of the behavior of expansive soils following their interactions with climate, vegetation, hydrology, hydrogeology, constructions among others, but also the influence of lateral and vertical variations of fine soil facies.
基金The National Natural Science Foundation of China(No.51378121)
文摘In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embankment section were simulated by ABAQUS. The simulation results indicate that the matric suction was a concave distribution on top of the expansive soil foundation and that it induced differential deformation of foundation and embankment. The peaks of tensile stress on top of the embankment are not located at a fixed site, but gradually move towards the shoulder following the evaporation duration. When the evaporation intensity is larger, the peak of tensile stress on top of embankment increases at a faster rate following the evaporation duration,and its location is closer to the shoulder. The thicker expansive soil layer helps the peaks of tensile stress to reach the critical tensile stress quickly, but the embankment cannot crack when the expansive soil layer is no more than 1.5m after 30d soil surface evaporation; the higher the embankment, the smaller the peak of tensile stress occurring on top of the highway embankment, and its location will be further away from the shoulder. Therefore, a higher embankment constructed on a thinner expansive soil layer can reduce the crack generation within the highway embankment.
基金financially supported by the National Key Research and Development Program of China(Grant No.2016YFB0701204)
文摘Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosity, while reducing the secondary dendritic arm spacing of a wheel casting during low-pressure die casting(LPDC) process, was taken as an example of such problem. A commercial simulation software Pro CASTTM was applied to simulate the filling and solidification processes. Additionally, a program for integrating the optimization algorithm with numerical simulation was developed based on SiPESC. By setting pouring temperature and filling pressure as design variables, shrinkage porosity and secondary dendritic arm spacing as objective variables, the multi-objective optimization of minimum volume of shrinkage porosity and secondary dendritic arm spacing was achieved. The optimal combination of AZ91 D wheel casting was: pouring temperature 689 °C and filling pressure 6.5 kPa. The predicted values decreased from 4.1% to 2.1% for shrinkage porosity, and 88.5 μm to 81.2 μm for the secondary dendritic arm spacing. The optimal results proved the feasibility of the developed program in multi-objective optimization.