By using the partial ordering method,a more general type,of Ekeland’s ariational principle and a set-valued Caristi’s coincidence theorem in probabilistic metric spaces are obtained.In addition,a direct simple proof...By using the partial ordering method,a more general type,of Ekeland’s ariational principle and a set-valued Caristi’s coincidence theorem in probabilistic metric spaces are obtained.In addition,a direct simple proof of the equivalence between these two theorems in probabilistic metric spaces is given.展开更多
One group of SiC films are grown on silicon-on-insulator (SOI) substrates with a series of silicon-overlayer thickness. Raman scattering spectroscopy measurement clearly indicates that a systematic trend of residual...One group of SiC films are grown on silicon-on-insulator (SOI) substrates with a series of silicon-overlayer thickness. Raman scattering spectroscopy measurement clearly indicates that a systematic trend of residual stress reduction as the silicon over-layer thickness decreases for the SOI substrates. Strain relaxation in the SiC epilayer is explained by force balance approach and near coincidence lattice model.展开更多
文摘By using the partial ordering method,a more general type,of Ekeland’s ariational principle and a set-valued Caristi’s coincidence theorem in probabilistic metric spaces are obtained.In addition,a direct simple proof of the equivalence between these two theorems in probabilistic metric spaces is given.
文摘One group of SiC films are grown on silicon-on-insulator (SOI) substrates with a series of silicon-overlayer thickness. Raman scattering spectroscopy measurement clearly indicates that a systematic trend of residual stress reduction as the silicon over-layer thickness decreases for the SOI substrates. Strain relaxation in the SiC epilayer is explained by force balance approach and near coincidence lattice model.