According to the basic concepts of precision and the principles of analysis of variance (ANOVA), precision types for experiments and variety comparison in regional crop trials (RCT) were studied and developed; expecte...According to the basic concepts of precision and the principles of analysis of variance (ANOVA), precision types for experiments and variety comparison in regional crop trials (RCT) were studied and developed; expected variety comparison precision (EVCP) and realized variety comparison precision (RVCP) and the corresponding statistical indexes of them were proposed. It was explained that experimental precision (EP) and variety comparison precision (VCP) are two kinds of precision of RCT; EP includes error precision and variety mean precision, which can be measured respectively by the coefficient of variation of single observation's error (CVe) and the coefficient of variation of variety mean's error (CVy); VCP includes EVCP and RVCP, which can be measured respectively by the detectable least relative difference (DLRD) and the relative least significant distance (RLSD); EP is an important factor of VCP but not identical to it; RVCP is the realization of EVCP. Besides error, experimental design and GE interaction and ANOVA model affect VCP. Several application examples for these precision indexes were presented, and the precision of regional cotton trials in the Yellow River Valley and the Changjiang Valley were investigated through the historical data of RCTs from 1980 to 1999.展开更多
A detector for fast neutrons based on a 10 × 10 cm^2 triple gas electron multiplier (GEM) device is developed and tested. A neutron converter, which is a high density polyethylene (HDPE) layer, is combined wi...A detector for fast neutrons based on a 10 × 10 cm^2 triple gas electron multiplier (GEM) device is developed and tested. A neutron converter, which is a high density polyethylene (HDPE) layer, is combined with the triple GEM detector cathode and placed inside the detector, in the path of the incident neutrons. The detector is tested by obtaining the energy deposition spectrum with an Am Be neutron source in the Institute of Modern Physics (IMP) at Lanzhou. In the present work we report the results of the tests and compare them with those of simulations. The transport of fast neutrons and their interactions with the different materials in the detector are simulated with the GEANT4 code, to understand the experimental results. The detector displays a clear response to the incident fast neutrons. However, an unexpected disagreement in the energy dependence of the response between the simulated and measured spectra is observed. The neutron sources used in our simulation include deuterium-tritium (DT, 14 MeV), deuterium-deuterium (DD, 2.45 MeV), and Am Be sources. The simulation results also show that among the secondary particles generated by the incident neutron, the main contributions to the total energy deposition are from recoil protons induced in hydrogen-rich HDPE or Kapton (GEM material), and activation photons induced by neutron interaction with Ar atoms. Their contributions account for 90% of the total energy deposition. In addition, the dependence of neutron deposited energy spectrum on the composition of the gas mixture is presented.展开更多
Twin vortices flow behavior with out-of-plane angle effect in double bent pipe system is studied numerically and experimentally. Double bent pipe system generates very complicated flow behavior including twin vortices...Twin vortices flow behavior with out-of-plane angle effect in double bent pipe system is studied numerically and experimentally. Double bent pipe system generates very complicated flow behavior including twin vortices in the downstream of the double bent. Moreover, angle from the plane of the double bent forms more complicated flow behavior due to the flow twist by out-of-plane angle. In this study, numerical analysis is examined for this double bent system using three-dimensional CFD code, FLUENT, to reproduce those complicated flow behaviors with twin vortices. Numerical results are compared with experimental results obtained by Ultrasonic Velocity Profiler (UVP). Discrepancy between numerical and experimental result is discussed changing out-of- plane angle, α. Velocity profiles obtained by numerical results are converted into UVP profiles, and they are compared with the experimental results by UVP. Consequently, velocity behavior especially around the pipe wall obtained by numerical results is agreed with experimental results.展开更多
Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms hav...Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms have been developed;however few of them are tested in solving building design problems.This paper compares performance of seven commonly-used multi-objective evolutionary optimization algorithms in solving the design problem of a nearly zero energy building(n ZEB) where more than 1.610 solutions would be possible.The compared algorithms include a controlled non-dominated sorting genetic algorithm witha passive archive(p NSGA-II),a multi-objective particle swarm optimization(MOPSO),a two-phase optimization using the genetic algorithm(PR_GA),an elitist non-dominated sorting evolution strategy(ENSES),a multi-objective evolutionary algorithm based on the concept of epsilon dominance(ev MOGA),a multi-objective differential evolution algorithm(sp MODE-II),and a multi-objective dragonfly algorithm(MODA).Several criteria was used to compare performance of these algorithms.In most cases,the quality of the obtained solutions was improved when the number of generations was increased.The optimization results of running each algorithm20 times with gradually increasing number of evaluations indicated that the PR_GA algorithm had a high repeatability to explore a large area of the solution-space and achieved close-to-optimal solutions with a good diversity,followed by the p NSGA-II,ev MOGA and sp MODE-II.Uncompetitive results were achieved by the ENSES,MOPSO and MODA in most running cases.The study also found that 1400-1800 were minimum required number of evaluations to stabilize optimization results of the building energy model.展开更多
Laparoscopic liver resection (LLR) for hepatocellular carcinoma (HCC) is increasing in this era of minimal invasive liver surgery. LLR for HCC is currently known to be a safer procedure than it was before because ...Laparoscopic liver resection (LLR) for hepatocellular carcinoma (HCC) is increasing in this era of minimal invasive liver surgery. LLR for HCC is currently known to be a safer procedure than it was before because of technical advances and improvement in postoperative patient management and remains the first-line treatment for HCC in compensated cirrhosis in many centers. We have the chance of analyzing the paper about the comparison between Middle Eastern and Western experience for LLR as treatment of HCC.展开更多
文摘According to the basic concepts of precision and the principles of analysis of variance (ANOVA), precision types for experiments and variety comparison in regional crop trials (RCT) were studied and developed; expected variety comparison precision (EVCP) and realized variety comparison precision (RVCP) and the corresponding statistical indexes of them were proposed. It was explained that experimental precision (EP) and variety comparison precision (VCP) are two kinds of precision of RCT; EP includes error precision and variety mean precision, which can be measured respectively by the coefficient of variation of single observation's error (CVe) and the coefficient of variation of variety mean's error (CVy); VCP includes EVCP and RVCP, which can be measured respectively by the detectable least relative difference (DLRD) and the relative least significant distance (RLSD); EP is an important factor of VCP but not identical to it; RVCP is the realization of EVCP. Besides error, experimental design and GE interaction and ANOVA model affect VCP. Several application examples for these precision indexes were presented, and the precision of regional cotton trials in the Yellow River Valley and the Changjiang Valley were investigated through the historical data of RCTs from 1980 to 1999.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11135002,11305232 and 11175076the Foundation of China Spallation Neutron Source:Study and Development of the High-performance and Low-angle Detector
文摘A detector for fast neutrons based on a 10 × 10 cm^2 triple gas electron multiplier (GEM) device is developed and tested. A neutron converter, which is a high density polyethylene (HDPE) layer, is combined with the triple GEM detector cathode and placed inside the detector, in the path of the incident neutrons. The detector is tested by obtaining the energy deposition spectrum with an Am Be neutron source in the Institute of Modern Physics (IMP) at Lanzhou. In the present work we report the results of the tests and compare them with those of simulations. The transport of fast neutrons and their interactions with the different materials in the detector are simulated with the GEANT4 code, to understand the experimental results. The detector displays a clear response to the incident fast neutrons. However, an unexpected disagreement in the energy dependence of the response between the simulated and measured spectra is observed. The neutron sources used in our simulation include deuterium-tritium (DT, 14 MeV), deuterium-deuterium (DD, 2.45 MeV), and Am Be sources. The simulation results also show that among the secondary particles generated by the incident neutron, the main contributions to the total energy deposition are from recoil protons induced in hydrogen-rich HDPE or Kapton (GEM material), and activation photons induced by neutron interaction with Ar atoms. Their contributions account for 90% of the total energy deposition. In addition, the dependence of neutron deposited energy spectrum on the composition of the gas mixture is presented.
文摘Twin vortices flow behavior with out-of-plane angle effect in double bent pipe system is studied numerically and experimentally. Double bent pipe system generates very complicated flow behavior including twin vortices in the downstream of the double bent. Moreover, angle from the plane of the double bent forms more complicated flow behavior due to the flow twist by out-of-plane angle. In this study, numerical analysis is examined for this double bent system using three-dimensional CFD code, FLUENT, to reproduce those complicated flow behaviors with twin vortices. Numerical results are compared with experimental results obtained by Ultrasonic Velocity Profiler (UVP). Discrepancy between numerical and experimental result is discussed changing out-of- plane angle, α. Velocity profiles obtained by numerical results are converted into UVP profiles, and they are compared with the experimental results by UVP. Consequently, velocity behavior especially around the pipe wall obtained by numerical results is agreed with experimental results.
文摘Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms have been developed;however few of them are tested in solving building design problems.This paper compares performance of seven commonly-used multi-objective evolutionary optimization algorithms in solving the design problem of a nearly zero energy building(n ZEB) where more than 1.610 solutions would be possible.The compared algorithms include a controlled non-dominated sorting genetic algorithm witha passive archive(p NSGA-II),a multi-objective particle swarm optimization(MOPSO),a two-phase optimization using the genetic algorithm(PR_GA),an elitist non-dominated sorting evolution strategy(ENSES),a multi-objective evolutionary algorithm based on the concept of epsilon dominance(ev MOGA),a multi-objective differential evolution algorithm(sp MODE-II),and a multi-objective dragonfly algorithm(MODA).Several criteria was used to compare performance of these algorithms.In most cases,the quality of the obtained solutions was improved when the number of generations was increased.The optimization results of running each algorithm20 times with gradually increasing number of evaluations indicated that the PR_GA algorithm had a high repeatability to explore a large area of the solution-space and achieved close-to-optimal solutions with a good diversity,followed by the p NSGA-II,ev MOGA and sp MODE-II.Uncompetitive results were achieved by the ENSES,MOPSO and MODA in most running cases.The study also found that 1400-1800 were minimum required number of evaluations to stabilize optimization results of the building energy model.
文摘Laparoscopic liver resection (LLR) for hepatocellular carcinoma (HCC) is increasing in this era of minimal invasive liver surgery. LLR for HCC is currently known to be a safer procedure than it was before because of technical advances and improvement in postoperative patient management and remains the first-line treatment for HCC in compensated cirrhosis in many centers. We have the chance of analyzing the paper about the comparison between Middle Eastern and Western experience for LLR as treatment of HCC.