期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Shake table experimental study of cable-stayed bridges with two different design strategies of H-shaped towers
1
作者 Xu Yan Cui Cunyu +1 位作者 Zeng Zeng Zeng Shijie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第2期483-493,共11页
As one of the main load-carrying components of cable-stayed bridges,bridge towers are typically required to remain elastic even when subjected to severe ground motions with a 2%-3%probability of exceedance in 50 years... As one of the main load-carrying components of cable-stayed bridges,bridge towers are typically required to remain elastic even when subjected to severe ground motions with a 2%-3%probability of exceedance in 50 years.To fulfill this special requirement imposed by current seismic design codes,reinforcement ratios in the bridge towers have to be kept significantly higher than if limited ductility behavior of the tower is allowed.In addition,since the foundation capacity is closely related to the moment and shear capacities of the bridge tower,a large increase in bridge construction cost for elastically designed cable-stayed bridge is inevitable.To further investigate the possibility of limited ductility bridge tower design strategies,a new 1/20-scale cable-stayed bridge model with H-shaped bridge towers designed according to strong strut-weak tower column design was tested.The shake table experimental results are compared with a previous strong tower column-weak strut designed full bridge model.A comparison of the results show that ductility design with plastic hinges located on tower columns,i.e.,strong strut-weak tower column design,is another effective seismic design strategy that results in only small residual displacement at the top of the tower column,even under very severe earthquake excitations. 展开更多
关键词 cable-stayed bridge shake table experiment limited ductility design H-shaped bridge tower seismic design
下载PDF
Analysis on kinematic and inertial interaction in liquefiable soil-pile-structure dynamic system 被引量:1
2
作者 Xu Chengshun Liu Hao +3 位作者 Dou Pengfei Wang Jinting Chen Su Du Xiuli 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期601-612,共12页
The dynamic pile-soil interaction in a liquefied site was investigated by means of numerical simulation and shaking table tests in this study.Based on the results from the shaking table experiment,the cross-correlatio... The dynamic pile-soil interaction in a liquefied site was investigated by means of numerical simulation and shaking table tests in this study.Based on the results from the shaking table experiment,the cross-correlation analysis of the soil displacement-pile bending moment and superstructure acceleration-pile bending moment was performed to study the influence of kinematic interaction and inertial interaction on the seismic response of piles.A relatively reasonable and accurate finite difference numerical analysis model of liquefiable soil-pile group-superstructure dynamic system was established.Through numerical simulation,the understanding of kinematic interaction and inertial interaction in the shaking table test was verified.The mass,damping and period of the superstructure were selected as variables to carry out parameter analysis to further study the influence of inertial interaction on the pile-structure failure mechanism.The results show that the influence of kinematic interaction on the pile was much greater than that of inertial interaction.The mass of the superstructure was the most important parameter of inertial interaction,and dynamic characteristics of the superstructure also had an effect on inertial interaction.The effect of inertial interaction on the part near the pile tip was more significant,indicating that the failure near the pile tip is closely related to inertial interaction. 展开更多
关键词 shaking table experiments pile-supported structures dynamic response LIQUEFACTION lateral constraint INSTABILITY
下载PDF
Analyses of Numerical Responses and Main Life Parameters for Determining the Suppression of Amblyseius cucumeris on Panonychus citri
3
作者 ZHANGYan-xuan LINJian-zhen +2 位作者 JIJie CHENXie KANGYu-mei 《Agricultural Sciences in China》 CAS CSCD 2005年第5期368-375,共8页
In this paper, the numeral response and main parameters of experimental population life table were analyzed for determining the suppressing ability of Amblyseius cucumeris on Panonychus citri. The result showed that: ... In this paper, the numeral response and main parameters of experimental population life table were analyzed for determining the suppressing ability of Amblyseius cucumeris on Panonychus citri. The result showed that: (1) Under 21-31°C and 1 - 9 prey densities/leaf fragment condition, the prey consumptions of A. cucumeris increased with the temperature or prey density; (2) In 1:3 predator-prey ratio treatment, the suppression of P. citri (Ro=34.0053; T=19.4369; t=3.8204) was rather weak, it was enhanced as the ratio over 5:30, and the populations of P. citri in these treatments can be fully controlled within 4-5 days; (3) Under 25±1°C, 80-85% RH and 15L: 9D illumination conditions, the net reproductive rate, mean generation duration and the time for population double increase of P. citri (Ro=34.0053; T=19.4369; t=3.8204) were higher than those of A. cucumeris (Ro=21.8750; T=16.8943; t=3.7954). While the intrinsic rate of increase and finite rate of increase of the former (rm=0.1814; λ=1.1989) were lower than those of the latter (rm=0.1826; λ=1.2004). These results indicated that A. cucumeris is a desirable bio-control agent to suppress P. citri at lower population stage in citrus orchard. 展开更多
关键词 Amblyseius cucumeris Panonychus citri Numerical response Parameters of experimental population life table Biological control agent
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部