期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Evaluation of the Shallow Gas Hydrate Production Based on the Radial Drilling-Heat Injection-Back Fill Method
1
作者 CHEN Qiang WAN Yizhao +6 位作者 WU Nengyou SUN Jianye WANG Jian LIU Changling LI Yanlong LI Chengfeng HU Gaowei 《Journal of Ocean University of China》 CAS CSCD 2024年第1期119-128,共10页
It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because o... It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because of the high risk of well construction and low production efficiency,they are difficult to be recovered by using conventional oil production methods.As a result,this paper proposes an alternative design based on a combination of radial drilling,heat injection,and backfilling methods.Multi-branch holes are used to penetrate shallow gas hydrate reservoirs to expand the depressurization area,and heat injection is utilized as a supplement to improve gas production.Geotechnical information collected from an investigation site close to the offshore production well in the South China Sea is used to assess the essential components of this plan,including well construction stability and gas production behavior.It demonstrates that the hydraulic fracturing of the 60mbsf overburden layer can be prevented by regulating the drilling fluid densities.However,the traditional well structure is unstable,and the suction anchor is advised for better mechanical performance.The gas produc-tion rate can be significantly increased by combining hot water injection and depressurization methods.Additionally,the suitable produc-tion equipment already in use is discussed. 展开更多
关键词 shallow gas hydrate trail production radial drilling-heat injection-back fill method experimental and numerical simulation
下载PDF
Fundamental study and utilization on supercritical CO_(2) fracturing developing unconventional resources:Current status,challenge and future perspectives 被引量:5
2
作者 Bing Yang Hai-Zhu Wang +5 位作者 Gen-Sheng Li Bin Wang Liang Chang Gang-Hua Tian Cheng-Ming Zhao Yong Zheng 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2757-2780,共24页
Under the fact that considerable explo ration and production of unconventional re sources and wo rsening global climate,reducing carbon emission and rationally utilizing carbon resources have been drawn increasing att... Under the fact that considerable explo ration and production of unconventional re sources and wo rsening global climate,reducing carbon emission and rationally utilizing carbon resources have been drawn increasing attention.Supercritical CO_(2)(SC-CO_(2)) has been proposed as anhydrous fracturing fluid to develop unconventional reservoirs,since its advantages of reducing water consumption,reservoir contamination etc.Well understanding of SC-CO_(2)fracturing mechanism and key influencing factors will exert significant impact on the application of this technology in the field.In this paper,the fundamental studies on SC-CO_(2)fracturing from the aspects of laboratory experiment and simulation are reviewed.The fracturing experimental setups,fracture monitoring and characterizing methods,unconventional formation categories,numerical simulation approaches,fracturing mechanism and field application etc.,are analyzed.The fundamental study results indicate that compared with conventional hydraulic fracturing,SC-CO_(2)fracturing can reduce fracture initiation pressure and easily induce complex fracture networks with multiple branches.The field test further verifies the application prospect and the possibility of carbon storage.However,due to the limitation of reservoir complexity and attributes of SC-CO_(2),massive challenges will be encountered in SC-CO_(2)fracturing.According to the current research status,the limitations in basic research and field application are summarized,and the future development direction of this technology and relevant suggestions are proposed. 展开更多
关键词 Unconventional resources Supercritical CO_(2)fracturing Experiment and numerical simulation Fracture initiation and propagation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部