Construction and demolition(C&D)waste has seriously affected the ecological environment.The utilization of C&D waste resources can greatly alleviate this problem,and it is an important way to help achieve the ...Construction and demolition(C&D)waste has seriously affected the ecological environment.The utilization of C&D waste resources can greatly alleviate this problem,and it is an important way to help achieve the goal of zero carbon in 2050.In this study,insulation concrete blocks were developed with recycled aggregates,cement,fly ash as main raw materials,expanded polystyrene(EPS)insulation boards as block insulation filling material,and selfdeveloped construction waste composite activator,interface enhancer,surface modifier and other additives.Through experimental research and performance test analysis,the best mix ratio of the product and the mechanism of each additive were proved.The experimental results showed that the insulation concrete block prepared under the conditions of recycled aggregates sand ratio of 45%,active activator Na_(2)SO_(4)content of 0.15%and fly ash content of 30%has the best performance and meets the relevant standards.展开更多
We comprehensively characterize the transmission performance of m-ary quadrature amplitude modulation(m-QAM) signals through a silicon microring resonator in the experiment. Using orthogonal frequency-division multipl...We comprehensively characterize the transmission performance of m-ary quadrature amplitude modulation(m-QAM) signals through a silicon microring resonator in the experiment. Using orthogonal frequency-division multiplexing based on offset QAM(OFDM/OQAM) which is modulated with m-QAM modulations, we demonstrate low-penalty data transmission of OFDM/OQAM 64-QAM, 128-QAM, 256-QAM, and 512-QAM signals in a silicon microring resonator. The observed optical signal-to-noise ratio(OSNR) penalties are 1.7 dB for 64-QAM,1.7 dB for 128-QAM, and 3.1 dB for 256-QAM at a bit-error rate(BER) of 2 × 10^(-3) and 3.3 dB for 512-QAM at a BER of 2 × 10^(-2). The performance degradation due to the wavelength detuning from the microring resonance is evaluated, showing a wavelength range of ~0.48 nm with BER below 2 × 10^(-3). Moreover, we demonstrate data transmission of 191.2-Gbit/s simultaneous eight wavelength channel OFDM/OQAM 256-QAM signals in a silicon microring resonator, achieving OSNR penalties less than 2 dB at a BER of 2 × 10^(-2).展开更多
Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2...Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.展开更多
Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. T...Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. This experimental method needn't special experiment equipments. Experiment's dynamic repeatability is good. So wrist force sensor's dynamic performance is suitable to be calibrated by negative step response method. A new correlation wavelet transfer method is studied. By wavelet transfer method, the signal is decomposed into two dimensional spaces of time-frequency. So the problem of negative step exciting energy concentrating in the low frequency band is solved. Correlation wavelet transfer doesn't require that wavelet primary function be orthogonal and needn't wavelet reconstruction. So analyzing efficiency is high. An experimental bench is designed and manufactured to load the wrist force sensor orthogonal excitation force/moment. A piezoelectric force sensor is used to setup soft trigger and calculate the value of negative step excitation. A wrist force sensor is calibrated. The pulse response function is calculated after negative step excitation and step response have been transformed to positive step excitation and step response. The pulse response function is transferred to frequency response function. The wrist force sensor's dynamic characteristics are identified by the frequency response function.展开更多
The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general la...The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general layout and parts design process of the diesel engine. The development cycle is s horten by CAD/CAE/CAM technology. Through experiment, the general performance of the engine is in keeping ahead in our country. With boosting mid-cooling technology and related designing correction in EQ6105 DTAA diesel engine, it had obtained better motivity and economy. The full load s teady smog emission and smog emission during simulated free accelerating are all meeting with GB14761.6-93, GB3847-1999 limit requirement. The prototype had p assed reliability test and has reliable parts. It performance indexes are in the leading position in same diesel engine in China. The 13 working conditions gas pollute and particle discharging in this pro totype can meet the limit requirement of GB17691-2001, phase I. The EQ6105DTAA diesel engine parts has good generality with existing types, which lower down th e production cost.展开更多
In order to improve the design and research and development (R & D) efficiency of the pressure- compensating drip irrigation emitter,a step-by-step computational fluid dynamics (CFD) design method was proposed bas...In order to improve the design and research and development (R & D) efficiency of the pressure- compensating drip irrigation emitter,a step-by-step computational fluid dynamics (CFD) design method was proposed based on CFD theory combined with the finite element method. By analyzing its hydraulic performance through the step-by-step CFD method,the prediction pressure-flow curve(p-Q curve) of the pressure-compensating emitter was obtained. Then the test samples were fabricated using rapid prototype and manufacturing(RP & M) technology. The emitters' hydraulic performance experiment was carried out and the experimental p-Q curve was obtained. The step-by-step CFD design method was verified by comparing the experimental p-Q curve with the prediction values,which showed that the prediction values met the experimental results well within the normal range of the emitter's working pressure. On this basis,the effect of the emitter structure on its pressure-compensating performance was studied,which showed that the height of the pressure-compensating region had significant effects on the emitter's pressure-compensating performance. Series products of the pressure-compensating emitter could be designed by changing the region's height.展开更多
A trapped vortex combustor (TVC) has been a very promising novel concept for it offers improvements in lean blow out, altitude relight, operating range, as well as a potential to decrease NOx emissions compared to c...A trapped vortex combustor (TVC) has been a very promising novel concept for it offers improvements in lean blow out, altitude relight, operating range, as well as a potential to decrease NOx emissions compared to conventional combustors. The present paper discusses the improved designs of the new combustor over the prior ones of our research group, including that:a) the over-all dimensions, both axial and radial, are reduced to those of an actual aero-engine combustor; b) the air flow distribution is optimized, and especially 15% of the air is fed into the liner as cooling air; c) a straight-wall diffuser with divergence angle 9°is added. A series of experiments (cavity-fueled only, under atmospheric pressure) has been conducted to investigate the performance of the improved TVC. Experimental results show that at the inlet temperature of 523 K, the inlet pressure of 0.1 MPa, stable operation of the TVC test rig is observed for the Mach number 0.15-0.34, indicating good flame stability; the combustion efficiency obtained in this paper falls into the range of 60%-96%; as the total excess air ratio increases, the combustion efficiency decreases, while the increase of the inlet temperature is beneficial to high combustion efficiency; besides, the optimal Mach numbers for high combustion efficiency under different inlet conditions are confirmed. The outlet temperature profiles feature a bottom in the midheight of the exit. This paper demonstrates the feasibility for the TVC to be applied to a realistic aero-engine preliminarily and provides reference for TVC design.展开更多
In the traditional fertilization method,a large amount of fertilizer is applied,which causes congestion easily.It is not conducive to the sustainable development of agriculture.In this work,a vertical pneumatic fertil...In the traditional fertilization method,a large amount of fertilizer is applied,which causes congestion easily.It is not conducive to the sustainable development of agriculture.In this work,a vertical pneumatic fertilization system with a spiral Geneva mechanism was designed according to the operational requirements of variable-rate and smooth fertilization.The uniformity in discharging fertilizer with different spiral angles was simulated and analyzed by extended discrete element method(EDEM)based simulation software,from where the spiral angle of the fertilizer discharge wheel was determined to be 45°.The fertilization system includes a fertilizer apparatus with a spiral Geneva mechanism,whose optimal performance parameters were obtained from the bench experiment.The accuracy and uniformity of the fertilizer application system were taken as the evaluation indicators.The linear relationships of the discharged amount of fertilizer with the rotational speed and the opening of the fertilizer discharging wheel were verified by both static blowing fertilization and field experiments.The static blowing experimental results show that the discharged amount of fertilizer has a high linear correlation and accuracy with both the opening and rotational speed,and the highest correlation occurs with the rotational speed.The rotational speed and opening have significant effects on the discharged amount of fertilizer and the average coefficient of variation.The effect of the rotational speed was the most significant.According to the model obtained by multiple regression fittings,the optimal parameters were determined when the average coefficient of variation was small,the rotational speed was 15.9 r/min and the opening was 34.4 mm.Therefore,the purpose of precise fertilization can be achieved by adjusting the opening or rotational speed in a way to get the exact amount of fertilizer discharged as required by the corresponding crops.The field experiment showed that the variation coefficient of each fertilizer discharged decreases first and then increases with an increasing opening under different rotational speeds,which is consistent with the theoretical value.When the opening was 40 mm or 50 mm,the variation coefficient reached the minimum value,which is far less than the qualified index of 7.8%.In the static blowing experiment and the dynamic field experiment,the stability of the fertilizer discharging device can be significantly enhanced with the utilization of the pneumatic conveying fertilizer.This study can provide a theoretical reference for parameter selection and optimization of vertical spiral fertilization systems.展开更多
基金This work was supported by Science and technology project of housing and urban-rural Development Department of Shandong Province(2018)and Shandong Provincial Social Science Planning Research Project(20CGLJ13).
文摘Construction and demolition(C&D)waste has seriously affected the ecological environment.The utilization of C&D waste resources can greatly alleviate this problem,and it is an important way to help achieve the goal of zero carbon in 2050.In this study,insulation concrete blocks were developed with recycled aggregates,cement,fly ash as main raw materials,expanded polystyrene(EPS)insulation boards as block insulation filling material,and selfdeveloped construction waste composite activator,interface enhancer,surface modifier and other additives.Through experimental research and performance test analysis,the best mix ratio of the product and the mechanism of each additive were proved.The experimental results showed that the insulation concrete block prepared under the conditions of recycled aggregates sand ratio of 45%,active activator Na_(2)SO_(4)content of 0.15%and fly ash content of 30%has the best performance and meets the relevant standards.
基金National Program for Support of Top-Notch Young ProfessionalsNational Natural Science Foundation of China(NSFC)(11574001,11274131,61222502)Program for New Century Excellent Talents in University(NCET)(NCET-11-0182)
文摘We comprehensively characterize the transmission performance of m-ary quadrature amplitude modulation(m-QAM) signals through a silicon microring resonator in the experiment. Using orthogonal frequency-division multiplexing based on offset QAM(OFDM/OQAM) which is modulated with m-QAM modulations, we demonstrate low-penalty data transmission of OFDM/OQAM 64-QAM, 128-QAM, 256-QAM, and 512-QAM signals in a silicon microring resonator. The observed optical signal-to-noise ratio(OSNR) penalties are 1.7 dB for 64-QAM,1.7 dB for 128-QAM, and 3.1 dB for 256-QAM at a bit-error rate(BER) of 2 × 10^(-3) and 3.3 dB for 512-QAM at a BER of 2 × 10^(-2). The performance degradation due to the wavelength detuning from the microring resonance is evaluated, showing a wavelength range of ~0.48 nm with BER below 2 × 10^(-3). Moreover, we demonstrate data transmission of 191.2-Gbit/s simultaneous eight wavelength channel OFDM/OQAM 256-QAM signals in a silicon microring resonator, achieving OSNR penalties less than 2 dB at a BER of 2 × 10^(-2).
基金Project (2015CB251403) supported by the National Key Basic Research Program of China(973)
文摘Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.
基金National Hi-tech Research and Development Program of China(863 Program,No.2001AA42330).
文摘Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. This experimental method needn't special experiment equipments. Experiment's dynamic repeatability is good. So wrist force sensor's dynamic performance is suitable to be calibrated by negative step response method. A new correlation wavelet transfer method is studied. By wavelet transfer method, the signal is decomposed into two dimensional spaces of time-frequency. So the problem of negative step exciting energy concentrating in the low frequency band is solved. Correlation wavelet transfer doesn't require that wavelet primary function be orthogonal and needn't wavelet reconstruction. So analyzing efficiency is high. An experimental bench is designed and manufactured to load the wrist force sensor orthogonal excitation force/moment. A piezoelectric force sensor is used to setup soft trigger and calculate the value of negative step excitation. A wrist force sensor is calibrated. The pulse response function is calculated after negative step excitation and step response have been transformed to positive step excitation and step response. The pulse response function is transferred to frequency response function. The wrist force sensor's dynamic characteristics are identified by the frequency response function.
文摘The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general layout and parts design process of the diesel engine. The development cycle is s horten by CAD/CAE/CAM technology. Through experiment, the general performance of the engine is in keeping ahead in our country. With boosting mid-cooling technology and related designing correction in EQ6105 DTAA diesel engine, it had obtained better motivity and economy. The full load s teady smog emission and smog emission during simulated free accelerating are all meeting with GB14761.6-93, GB3847-1999 limit requirement. The prototype had p assed reliability test and has reliable parts. It performance indexes are in the leading position in same diesel engine in China. The 13 working conditions gas pollute and particle discharging in this pro totype can meet the limit requirement of GB17691-2001, phase I. The EQ6105DTAA diesel engine parts has good generality with existing types, which lower down th e production cost.
基金The National Natural Science Fund(No.50975227)The National High-tech R & D Program("863"Program)(No.2011AA100507-04)
文摘In order to improve the design and research and development (R & D) efficiency of the pressure- compensating drip irrigation emitter,a step-by-step computational fluid dynamics (CFD) design method was proposed based on CFD theory combined with the finite element method. By analyzing its hydraulic performance through the step-by-step CFD method,the prediction pressure-flow curve(p-Q curve) of the pressure-compensating emitter was obtained. Then the test samples were fabricated using rapid prototype and manufacturing(RP & M) technology. The emitters' hydraulic performance experiment was carried out and the experimental p-Q curve was obtained. The step-by-step CFD design method was verified by comparing the experimental p-Q curve with the prediction values,which showed that the prediction values met the experimental results well within the normal range of the emitter's working pressure. On this basis,the effect of the emitter structure on its pressure-compensating performance was studied,which showed that the height of the pressure-compensating region had significant effects on the emitter's pressure-compensating performance. Series products of the pressure-compensating emitter could be designed by changing the region's height.
基金Aeronautical Science Foundation of China (2008ZB52013)Funding of Jiangsu Innovation Program for Graduate Education (CXLX11_0211)
文摘A trapped vortex combustor (TVC) has been a very promising novel concept for it offers improvements in lean blow out, altitude relight, operating range, as well as a potential to decrease NOx emissions compared to conventional combustors. The present paper discusses the improved designs of the new combustor over the prior ones of our research group, including that:a) the over-all dimensions, both axial and radial, are reduced to those of an actual aero-engine combustor; b) the air flow distribution is optimized, and especially 15% of the air is fed into the liner as cooling air; c) a straight-wall diffuser with divergence angle 9°is added. A series of experiments (cavity-fueled only, under atmospheric pressure) has been conducted to investigate the performance of the improved TVC. Experimental results show that at the inlet temperature of 523 K, the inlet pressure of 0.1 MPa, stable operation of the TVC test rig is observed for the Mach number 0.15-0.34, indicating good flame stability; the combustion efficiency obtained in this paper falls into the range of 60%-96%; as the total excess air ratio increases, the combustion efficiency decreases, while the increase of the inlet temperature is beneficial to high combustion efficiency; besides, the optimal Mach numbers for high combustion efficiency under different inlet conditions are confirmed. The outlet temperature profiles feature a bottom in the midheight of the exit. This paper demonstrates the feasibility for the TVC to be applied to a realistic aero-engine preliminarily and provides reference for TVC design.
基金The authors gratefully acknowledge the support was provided by the National Key Research and Development Program of China(Grant No.2017YFD0700700,2017YFD0700704,2016YFD0200600,2016YFD0200606,2018YFD0200700).
文摘In the traditional fertilization method,a large amount of fertilizer is applied,which causes congestion easily.It is not conducive to the sustainable development of agriculture.In this work,a vertical pneumatic fertilization system with a spiral Geneva mechanism was designed according to the operational requirements of variable-rate and smooth fertilization.The uniformity in discharging fertilizer with different spiral angles was simulated and analyzed by extended discrete element method(EDEM)based simulation software,from where the spiral angle of the fertilizer discharge wheel was determined to be 45°.The fertilization system includes a fertilizer apparatus with a spiral Geneva mechanism,whose optimal performance parameters were obtained from the bench experiment.The accuracy and uniformity of the fertilizer application system were taken as the evaluation indicators.The linear relationships of the discharged amount of fertilizer with the rotational speed and the opening of the fertilizer discharging wheel were verified by both static blowing fertilization and field experiments.The static blowing experimental results show that the discharged amount of fertilizer has a high linear correlation and accuracy with both the opening and rotational speed,and the highest correlation occurs with the rotational speed.The rotational speed and opening have significant effects on the discharged amount of fertilizer and the average coefficient of variation.The effect of the rotational speed was the most significant.According to the model obtained by multiple regression fittings,the optimal parameters were determined when the average coefficient of variation was small,the rotational speed was 15.9 r/min and the opening was 34.4 mm.Therefore,the purpose of precise fertilization can be achieved by adjusting the opening or rotational speed in a way to get the exact amount of fertilizer discharged as required by the corresponding crops.The field experiment showed that the variation coefficient of each fertilizer discharged decreases first and then increases with an increasing opening under different rotational speeds,which is consistent with the theoretical value.When the opening was 40 mm or 50 mm,the variation coefficient reached the minimum value,which is far less than the qualified index of 7.8%.In the static blowing experiment and the dynamic field experiment,the stability of the fertilizer discharging device can be significantly enhanced with the utilization of the pneumatic conveying fertilizer.This study can provide a theoretical reference for parameter selection and optimization of vertical spiral fertilization systems.