The transonic-supersonic wind tunnel experiment on the aerodynamics of the rockets and missiles that have four, six, eight flat or wrap-around fins is introduced. The experimental results show, while M∞〈2.0, with th...The transonic-supersonic wind tunnel experiment on the aerodynamics of the rockets and missiles that have four, six, eight flat or wrap-around fins is introduced. The experimental results show, while M∞〈2.0, with the increase of the fins'number, the derivative of lift coefficient is increasing, the pressure center is shifting backwards, and the longitudinal static stability is augmenting. On the contrary, while the Mach number exceeds a certain supersonic value, the aerodynamic effectiveness of the eight-fin missiles would be lower than that of the six-fin missiles. For the low speed short-range missiles, by adopting six, eight or ten flat fins configuration, the lift effectiveness can be greatly increased, the pressure center can be shifted backwards, the static and dynamic stability can be obviously enhanced. For the high speed long-range large rockets and missiles launched from multi-tube launcher, the configuration adopting more than six fins can not be useful for increasing the stability but would make the rolling rate instable during the flight.展开更多
To alleviate the performance deterioration caused by dynamic stall of a wind turbine airfoil,the flow control by a microsecond-pulsed dielectric barrier discharge(MP-DBD) actuator on the dynamic stall of a periodicall...To alleviate the performance deterioration caused by dynamic stall of a wind turbine airfoil,the flow control by a microsecond-pulsed dielectric barrier discharge(MP-DBD) actuator on the dynamic stall of a periodically pitching NACA0012 airfoil was investigated experimentally.Unsteady pressure measurements with high temporal accuracy were employed in this study,and the unsteady characteristics of the boundary layer were investigated by wavelet packet analysis and the moving root mean square method based on the acquired pressure.The experimental Mach number was 0.2,and the chord-based Reynolds number was 870 000.The dimensionless actuation frequencies F+ were chosen to be 0.5,1,2,and 3,respectively.For the light dynamic regime,the MP-DBD plasma actuator plays the role of suppressing flow separation from the trial edge and accelerating the flow reattachment due to the high-momentum freestream flow being entrained into the boundary layer.Meanwhile,actuation effects were promoted with the increasing dimensionless actuation frequency F+.The control effects of the deep dynamic stall were to delay the onset and reduce the strength of the dynamic stall vortex due to the accumulating vorticity near the leading edge being removed by the induced coherent vortex structures.The laminar fluctuation and Kelvin-Helmholtz(K-H) instabilities of transition and relaminarization were also mitigated by the MP-DBD actuation,and the alleviated K-H rolls led to the delay of the transition onset and earlier laminar reattachment,which improved the hysteresis effect of the dynamic stall.For the controlled cases of F+=2,and F+=3,the laminar fluctuation was replaced by relatively low frequency band disturbances corresponding to the harmonic responses of the MP-DBD actuation frequency.展开更多
In order to improve structure performance of the dish solar concentrator,a three-dimensional model of dish solar concentrator was established based on the high-precision numerical algorithms.And a virtual wind tunnel ...In order to improve structure performance of the dish solar concentrator,a three-dimensional model of dish solar concentrator was established based on the high-precision numerical algorithms.And a virtual wind tunnel experiment with constant wind is adopted to investigate the pressure distribution of the reflective surface,velocity distribution of the fluid domain for the dish solar concentrator in different poses and wind speeds distribution.Some results about wind pressure distribution before and after dish solar concentrator surface and wind load velocity distribution in the entire fluid domain had been obtained.In particular,it is necessary to point out that the stiffness at the center of the dish solar concentrator should be relatively raised.The results can provide a theoretical basis for the improvement of solar concentrator dish structure as well as the failure analysis of dish solar concentrator in engineering practice.展开更多
Vertical-axis wind turbines(VAWTs)have been widely used in urban environments,which contain dust and experience strong turbulence.However,airfoils for VAWTs in urban environments have received considerably less resear...Vertical-axis wind turbines(VAWTs)have been widely used in urban environments,which contain dust and experience strong turbulence.However,airfoils for VAWTs in urban environments have received considerably less research attention than those for horizontal-axis wind turbines(HAWTs).In this study,the sensitivity of a new VAWT airfoil developed at the Lanzhou University of Technology(LUT)to roughness was investigated via a wind tunnel experiment.The results show that the LUT airfoil is less sensitive to roughness at a roughness height of<0.35 mm.Moreover,the drag bucket of the LUT airfoil decreases with increasing roughness height.Furthermore,the loads on the LUT airfoil during dynamic stall were studied at different turbulence intensities using a numerical method at a tip-speed ratio of 2.Before the stall,the turbulence intensity did not considerably affect the normal or tangential force coefficients of the LUT airfoil.However,after the stall,the normal force coefficient varied obviously at low turbulence intensity.Moreover,as the turbulence intensity increased,the normal and tangential force coefficients decreased rapidly,particularly in the downwind region of the VAWT.展开更多
The horseshoe vortex generated around the sail-body junction of submarine has an important influence on the non-uniformity of submarine wake at propeller disc. The flow characteristics in the horseshoe vortex generate...The horseshoe vortex generated around the sail-body junction of submarine has an important influence on the non-uniformity of submarine wake at propeller disc. The flow characteristics in the horseshoe vortex generated area are analyzed, and a new method of vortex control baffler is presented. The influence of vortex control baffler on the flow field around submarine main body with sail is numerically simulated. The wind tunnel experiment on submarine model is carried out, and it is proved that the vortex control baffler can weaken the hoi-seshoe vortex and decrease the non-uniformity of the wake at propeller disc. It is shown from the experiment results that the effect of vortex control baffler depends on its installation position; with a proper installation position, the non-uniform coefficient of submarine wake would be declined by about 50%; the Reynolds number of submarine model has an influence on the effect of vortex control baffler too, and the higher the Reynolds number is, the better the effect of the vortex control baffler is.展开更多
A frequency-domain algorithm is presented for the dynamic analysis of guyed masts. By introducing a four-degrees-of-freedom model of a suspended cable, guyed masts are simpli?ed as an equivalent cable-beam model. Th...A frequency-domain algorithm is presented for the dynamic analysis of guyed masts. By introducing a four-degrees-of-freedom model of a suspended cable, guyed masts are simpli?ed as an equivalent cable-beam model. Then, based on the discrete random vibration theory, recurrence formulas for the statistical moments of the wind-induced behavior of guyed masts are developed with the wind load treated as ?ltered white noise excitation. The dynamic analysis of a two-level guyed mast has been illustrated. Finally, results from a wind-tunnel experiment of guyed mast are used to testify the theory developed in this paper.展开更多
The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding eff...The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through.展开更多
Piezoelectric actuators are mounted on both sides of a rectangular wing model. Possibility of the improvement of aircraft rolling power is investigated. All experiment proiects, including designing the wind tunnel mod...Piezoelectric actuators are mounted on both sides of a rectangular wing model. Possibility of the improvement of aircraft rolling power is investigated. All experiment proiects, including designing the wind tunnel model, checking the material constants, measuring the natural frequencies and checking the effects of actuators, guarantee the correctness and precision of the finite element model. The wind tunnel experiment results show that the calculations coincide with the experiments. The feasibility of fictitious control surface is validated.展开更多
To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental r...To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental results are introduced in this paper. The experimental data show that the canard is an inefficient rolling control device for canard-controlled missile with fixed tail fins; but for the free-spinning tail fin configuration, the canard can conduct rolling control of the missile, and even have higher controlling efficiency under larger canard deflection angle.展开更多
In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture c...In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion.展开更多
As the sand mass flux increases from zero at the leading edge of a saltating surface to the equilibrium mass flux at the critical fetch length,the wind flow is modified and then the relative contribution of aerodynami...As the sand mass flux increases from zero at the leading edge of a saltating surface to the equilibrium mass flux at the critical fetch length,the wind flow is modified and then the relative contribution of aerodynamic and bombardment entrainment is changed.In the end the velocity,trajectory and mass flux profile will vary simultaneously.But how the transportation of different sand size groups varies with fetch distance is still unclear.Wind tunnel experiments were conducted to investigate the fetch effect on mass flux and its distribution with height of the total sand and each size group in transportation.The mass flux was measured at six fetch length locations(0.5,1.2,1.9,2.6,3.4 and 4.1 m)and at three free-stream wind velocities(8.8,12.2 and 14.5 m/s).The results reveal that the total mass flux and the mass flux of each size group with height can be expressed by q=aexp(–bh),where q is the sand mass flux at height h,and a and b are regression coefficients.The coefficient b represents the relative decay rate.Both the relative decay rates of total mass flux and each size group are independent of fetch length after a quick decay over a short fetch.This is much shorter than that of mass flux.The equilibrium of the relative decay rate cannot be regarded as an equilibrium mass flux profile for aeolian sand transport.The mass fluxes of 176.0,209.3 and 148.0μm size groups increase more quickly than that of other size groups,which indicates strong size-selection of grains exists along the fetch length.The maximal size group in mass flux(176.0μm)is smaller than the maximal size group of the bed grains(209.3μm).The relative contribution of each size group to the total mass flux is not monotonically decreasing with grain size due to the lift-off of some small grains being reduced due to the protection by large grains.The results indicate that there are complex interactions among different size groups in the developmental process of aeolian sand transport and more attention should be focused on the fetch effect because it has different influences on the total mass flux,the mass flux profile and its relative decay rate.展开更多
The simulation performance over complex building clusters of a wind simulation model(Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system(Urban Microscale Air Po...The simulation performance over complex building clusters of a wind simulation model(Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system(Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL(Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data(Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier–Stokes equations, and can produce very high-resolution(1–5 m) wind fields of a complex neighborhood scale urban building canopy(~ 1 km ×1km) in less than 3 min when run on a personal computer.展开更多
This paper studies the evolution of crescent-shaped dune under the influence of injected flux. A scaling law and a wind tunnel experiment are carried out for comparison. The experiment incorporates a novel image proce...This paper studies the evolution of crescent-shaped dune under the influence of injected flux. A scaling law and a wind tunnel experiment are carried out for comparison. The experiment incorporates a novel image processing algorithm to recover the evolutionary process. The theoretical and experimental results agree well in the middle stage of dune evolution, but deviate from each other in the initial and final stages, suggesting that the crescent-shaped dune evolution is intrinsically scale-variant and that the crescent shape breaks down under unsaturated condition.展开更多
The most complicated component in cavitating flow and pressure distribution is the flow in the cavity closure line. The cavitating flow and pressure distribution provide critical aspects of flow field details in the r...The most complicated component in cavitating flow and pressure distribution is the flow in the cavity closure line. The cavitating flow and pressure distribution provide critical aspects of flow field details in the region. The integral of pressure results of the hydrodynamic forces, indicate domination in the design of a supercavitating vehicle. An experiment was performed in a water tunnel to investigate the pressure characteristics of the cavity closure region. Ventilation methods were employed to generate artificial cavity, and the ventilation rate was adjusted accordingly to obtain the desired cavity length. An array of pressure transducers was laid down the cavity closure line to capture pressure distribution in this region. The experimental results show that there is a pressure peak in the cavity closure region, and the rise rate of pressure in space tends to be higher in the upwind side when the flow is non-axisymmetric. The transient pressure variations during the cavity formation procedure were also present. The method of measurement in this paper can be referenced by engineers. The result helps to study the flow pattern of cavity closure region, and it can also be used to analyze the formation of supercavitating vehicle hydrodynamics.展开更多
This study investigated the flow characteristics around a cross-flow wind turbine. A wind tunnel experiment (WTE) was performed to measure the flow characteristics past the wind turbine when operating at the optimal t...This study investigated the flow characteristics around a cross-flow wind turbine. A wind tunnel experiment (WTE) was performed to measure the flow characteristics past the wind turbine when operating at the optimal tip-speed ratio of λ = 0.4. In addition, computational fluid dynamics (CFD) simulations were performed for the flow field around the wind turbine that was operating at tip-speed ratios of λ = 0.1, 0.4, and 0.7. The CFD approach was validated against the WTE measurements. CFD results confirmed that with an increase in λ, the velocity deficit was generally increased in the leeward of the return side of the wind turbine, while it was generally decreased in the leeward of the drive side of the wind turbine. It was also confirmed that with an increase in λ, the turbulence kinetic energy was generally increased in the leeward of the return side of the wind turbine, while it generally decreased in the leeward of the drive side of the wind turbine.展开更多
Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics mo...Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics model of the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body is amended.The research indicates that the change trends of zero lift drag coefficient and lift coefficient to Mach number are similar.The calculation result and wind tunnel experiment data all verify the validity of the amended dynamics model by which to estimate the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body,and thus providing some technical reference to aerodynamics character analysis of the same types of winged rigid body.展开更多
In the present work,the hydrodynamic performance of the double deflector rectangular cambered otter board was studied using wind tunnel experiment,flume tank experiment and numerical simulation.Results showed that the...In the present work,the hydrodynamic performance of the double deflector rectangular cambered otter board was studied using wind tunnel experiment,flume tank experiment and numerical simulation.Results showed that the otter board had a good hydrodynamic performance with the maximum lift-to-drag ratio(K_(MAX) = 3.70).The flow separation occurred when the angle of attack(AOA) was at 45?,which revealed that the double deflector structure of the otter board can delay the flow separation.Numerical simulation results showed a good agreement with experiment ones,and could predict the critical AOA,which showed that it can be used to study the hydrodynamic performance of the otter board with the advantage of flow visualization.However,the drag coefficient in flume tank was much higher than that in wind tunnel,which resulted in a lower lift-to-drag ratio.These may be due to different fluid media between flume tank and wind tunnel,which result in the big difference of the vortexes around the otter board.Given the otter boards are operated in water,it was suggested to apply both flume tank experiment and numerical simulation to study the hydrodynamic performance of otter board.展开更多
The snow is one of the most important water resources in grassland in northern and western China, while the wind blowing snow due to the strong wind there is a common phenomenon, which can lead to heavy disasters to h...The snow is one of the most important water resources in grassland in northern and western China, while the wind blowing snow due to the strong wind there is a common phenomenon, which can lead to heavy disasters to harm the local animal husbandry and transportation. A reasonable arrangement of the snow protection forests is one of the most economical and effective methods to prevent the wind blowing snow, and a great number of investigations were carried out for its wind block effects. However, the deposition patterns of the snowfall and the blowing snow in the forests are still largely unknown. In this study, the wind tunnel experiments are performed to investigate the influences of the vegetation (grass and bush) on the wind speed profiles and the spatial distribution of the accumulated snow, by using the bran as the snow substitute. The snow blocking abilities of two bush models are analyzed to show the effects of different coverages. The results show that the grass and the bush have different effects on the wind speed profiles, and the snow-blocking abilities of the vegetation and the resulting spatial distribution are determined by the amount of the snowfall, the wind speed, and the height and the coverage of the vegetation. For the engineering design, if the snow is required on the windward side of the vegetation or in the vegetation, the densely arranged forest belts are needed, if the snow is required to accumulate on the leeward side of the vegetation, the sparse forest belts can be used. This work would be helpful as a reference to the reasonable arrangement of the snow-protection forests in pastoral areas.展开更多
A flow field around a streamlined body at an intermediate angle of incidence is dominated by cross-flow separation and vortical flow fields. The separated flow leads to a pair of vortices on the leeside of the body; t...A flow field around a streamlined body at an intermediate angle of incidence is dominated by cross-flow separation and vortical flow fields. The separated flow leads to a pair of vortices on the leeside of the body; therefore, it is essential to accurately determine this pair and estimate its size and location. This study utilizes the element-based finite volume method based on RANS equations to compute a 3D axisymmetric flow around a SUBOFF bare submarined hull. Cross-flow vortex structures are then numerically simulated and compared for a submarine with SUBOFF and DRDC STR bows. Computed results of pressure and shear stress distribution on the hull surface and the strength and locations of the vortex structures are presented at an intermediate incidence angle of 20°. A wind tunnel experiment is also conducted to experimentally visualize the vortex structures and measure their core locations. These experimental results are compared with the numerical data, and a good agreement is found.展开更多
Wind force coefficients for designing porous canopy roofs have been investigated based on a series of wind tunnel experiments. Gable, troughed and mono-sloped roofs were tested. The roof models were made of 0.5 mm thi...Wind force coefficients for designing porous canopy roofs have been investigated based on a series of wind tunnel experiments. Gable, troughed and mono-sloped roofs were tested. The roof models were made of 0.5 mm thick perforated duralumin plates, the porosity of which was changed from 0 to about 0.4. Overall aerodynamic forces and moments acting on the roof model were measured in a turbulent boundary layer with a six-component force balance for various wind directions. The results indicate that the wind loads on canopy roofs generally decrease with an increase in porosity of the roof. Assuming that the roof is rigid and supported by the four corner columns with no walls, the axial forces induced in the columns are regarded as the most important load effect for discussing the design wind loads. Two loading patterns causing the maximum tension and compression in the columns are considered. Based on a combination of the lift and moment coefficients, the design wind force coefficients on the windward and leeward halves of the roof are presented for the two loading patterns as a function of the roof pitch and porosity. The effect of porosity is taken into account as a reduction factor of the wind loads.展开更多
文摘The transonic-supersonic wind tunnel experiment on the aerodynamics of the rockets and missiles that have four, six, eight flat or wrap-around fins is introduced. The experimental results show, while M∞〈2.0, with the increase of the fins'number, the derivative of lift coefficient is increasing, the pressure center is shifting backwards, and the longitudinal static stability is augmenting. On the contrary, while the Mach number exceeds a certain supersonic value, the aerodynamic effectiveness of the eight-fin missiles would be lower than that of the six-fin missiles. For the low speed short-range missiles, by adopting six, eight or ten flat fins configuration, the lift effectiveness can be greatly increased, the pressure center can be shifted backwards, the static and dynamic stability can be obviously enhanced. For the high speed long-range large rockets and missiles launched from multi-tube launcher, the configuration adopting more than six fins can not be useful for increasing the stability but would make the rolling rate instable during the flight.
基金supported by National Natural Science Foundation of China(Nos.12172299 and 1190021162)。
文摘To alleviate the performance deterioration caused by dynamic stall of a wind turbine airfoil,the flow control by a microsecond-pulsed dielectric barrier discharge(MP-DBD) actuator on the dynamic stall of a periodically pitching NACA0012 airfoil was investigated experimentally.Unsteady pressure measurements with high temporal accuracy were employed in this study,and the unsteady characteristics of the boundary layer were investigated by wavelet packet analysis and the moving root mean square method based on the acquired pressure.The experimental Mach number was 0.2,and the chord-based Reynolds number was 870 000.The dimensionless actuation frequencies F+ were chosen to be 0.5,1,2,and 3,respectively.For the light dynamic regime,the MP-DBD plasma actuator plays the role of suppressing flow separation from the trial edge and accelerating the flow reattachment due to the high-momentum freestream flow being entrained into the boundary layer.Meanwhile,actuation effects were promoted with the increasing dimensionless actuation frequency F+.The control effects of the deep dynamic stall were to delay the onset and reduce the strength of the dynamic stall vortex due to the accumulating vorticity near the leading edge being removed by the induced coherent vortex structures.The laminar fluctuation and Kelvin-Helmholtz(K-H) instabilities of transition and relaminarization were also mitigated by the MP-DBD actuation,and the alleviated K-H rolls led to the delay of the transition onset and earlier laminar reattachment,which improved the hysteresis effect of the dynamic stall.For the controlled cases of F+=2,and F+=3,the laminar fluctuation was replaced by relatively low frequency band disturbances corresponding to the harmonic responses of the MP-DBD actuation frequency.
基金Projects(201208430262,201306130031)supported by the China Scholarship Council
文摘In order to improve structure performance of the dish solar concentrator,a three-dimensional model of dish solar concentrator was established based on the high-precision numerical algorithms.And a virtual wind tunnel experiment with constant wind is adopted to investigate the pressure distribution of the reflective surface,velocity distribution of the fluid domain for the dish solar concentrator in different poses and wind speeds distribution.Some results about wind pressure distribution before and after dish solar concentrator surface and wind load velocity distribution in the entire fluid domain had been obtained.In particular,it is necessary to point out that the stiffness at the center of the dish solar concentrator should be relatively raised.The results can provide a theoretical basis for the improvement of solar concentrator dish structure as well as the failure analysis of dish solar concentrator in engineering practice.
基金This work was supported by the Natural Science Foundation of GANSU(grant 1508RJYA098)National Natural Science Foundation of China(grants 51766009,51761135012,11872248)+1 种基金National Basic Research Program of China(grant 2014CB046201)The authors also thank the people who provided many good suggestions for this paper,and Northwestern Polytechnical University for providing the experimental instruments and wind tunnel.
文摘Vertical-axis wind turbines(VAWTs)have been widely used in urban environments,which contain dust and experience strong turbulence.However,airfoils for VAWTs in urban environments have received considerably less research attention than those for horizontal-axis wind turbines(HAWTs).In this study,the sensitivity of a new VAWT airfoil developed at the Lanzhou University of Technology(LUT)to roughness was investigated via a wind tunnel experiment.The results show that the LUT airfoil is less sensitive to roughness at a roughness height of<0.35 mm.Moreover,the drag bucket of the LUT airfoil decreases with increasing roughness height.Furthermore,the loads on the LUT airfoil during dynamic stall were studied at different turbulence intensities using a numerical method at a tip-speed ratio of 2.Before the stall,the turbulence intensity did not considerably affect the normal or tangential force coefficients of the LUT airfoil.However,after the stall,the normal force coefficient varied obviously at low turbulence intensity.Moreover,as the turbulence intensity increased,the normal and tangential force coefficients decreased rapidly,particularly in the downwind region of the VAWT.
基金supported by the State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University(Grant No.0708)
文摘The horseshoe vortex generated around the sail-body junction of submarine has an important influence on the non-uniformity of submarine wake at propeller disc. The flow characteristics in the horseshoe vortex generated area are analyzed, and a new method of vortex control baffler is presented. The influence of vortex control baffler on the flow field around submarine main body with sail is numerically simulated. The wind tunnel experiment on submarine model is carried out, and it is proved that the vortex control baffler can weaken the hoi-seshoe vortex and decrease the non-uniformity of the wake at propeller disc. It is shown from the experiment results that the effect of vortex control baffler depends on its installation position; with a proper installation position, the non-uniform coefficient of submarine wake would be declined by about 50%; the Reynolds number of submarine model has an influence on the effect of vortex control baffler too, and the higher the Reynolds number is, the better the effect of the vortex control baffler is.
基金Project supported by the National Natural Science Foundation of China (No. 59778030).
文摘A frequency-domain algorithm is presented for the dynamic analysis of guyed masts. By introducing a four-degrees-of-freedom model of a suspended cable, guyed masts are simpli?ed as an equivalent cable-beam model. Then, based on the discrete random vibration theory, recurrence formulas for the statistical moments of the wind-induced behavior of guyed masts are developed with the wind load treated as ?ltered white noise excitation. The dynamic analysis of a two-level guyed mast has been illustrated. Finally, results from a wind-tunnel experiment of guyed mast are used to testify the theory developed in this paper.
基金financially supported by the Scientific and Technological Services Network Planning Project of Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (HHS-TSS-STS-1504)the Technological Research and Developmental Planning Projects of China Railway Corporation (2015G005-B)the National Natural Science Foundation of China (41501010, 41401611)
文摘The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through.
文摘Piezoelectric actuators are mounted on both sides of a rectangular wing model. Possibility of the improvement of aircraft rolling power is investigated. All experiment proiects, including designing the wind tunnel model, checking the material constants, measuring the natural frequencies and checking the effects of actuators, guarantee the correctness and precision of the finite element model. The wind tunnel experiment results show that the calculations coincide with the experiments. The feasibility of fictitious control surface is validated.
文摘To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental results are introduced in this paper. The experimental data show that the canard is an inefficient rolling control device for canard-controlled missile with fixed tail fins; but for the free-spinning tail fin configuration, the canard can conduct rolling control of the missile, and even have higher controlling efficiency under larger canard deflection angle.
基金supported by Key Program of National Natural Science Foundation of China(Grant No. 41130744)China National Natural Science Foundation (Grant No. 40971165)State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau open Foundation(Grant No. 10501-1220)
文摘In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion.
基金supported by the National Natural Science Foundation of China (41601002, 41871011)the China Postdoctoral Science Foundation (2017M623115)+1 种基金the Science Foundation of Shaanxi Province (2018JQ4010)the Fundamental Research Funds for the Central Universities (GK201903077)
文摘As the sand mass flux increases from zero at the leading edge of a saltating surface to the equilibrium mass flux at the critical fetch length,the wind flow is modified and then the relative contribution of aerodynamic and bombardment entrainment is changed.In the end the velocity,trajectory and mass flux profile will vary simultaneously.But how the transportation of different sand size groups varies with fetch distance is still unclear.Wind tunnel experiments were conducted to investigate the fetch effect on mass flux and its distribution with height of the total sand and each size group in transportation.The mass flux was measured at six fetch length locations(0.5,1.2,1.9,2.6,3.4 and 4.1 m)and at three free-stream wind velocities(8.8,12.2 and 14.5 m/s).The results reveal that the total mass flux and the mass flux of each size group with height can be expressed by q=aexp(–bh),where q is the sand mass flux at height h,and a and b are regression coefficients.The coefficient b represents the relative decay rate.Both the relative decay rates of total mass flux and each size group are independent of fetch length after a quick decay over a short fetch.This is much shorter than that of mass flux.The equilibrium of the relative decay rate cannot be regarded as an equilibrium mass flux profile for aeolian sand transport.The mass fluxes of 176.0,209.3 and 148.0μm size groups increase more quickly than that of other size groups,which indicates strong size-selection of grains exists along the fetch length.The maximal size group in mass flux(176.0μm)is smaller than the maximal size group of the bed grains(209.3μm).The relative contribution of each size group to the total mass flux is not monotonically decreasing with grain size due to the lift-off of some small grains being reduced due to the protection by large grains.The results indicate that there are complex interactions among different size groups in the developmental process of aeolian sand transport and more attention should be focused on the fetch effect because it has different influences on the total mass flux,the mass flux profile and its relative decay rate.
基金supported by the China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201106049)the National Natural Science Foundation of China(Grant Nos.51538005 and 41375014)the Jiangsu Collaborative Innovation Center for Climate Change,China
文摘The simulation performance over complex building clusters of a wind simulation model(Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system(Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL(Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data(Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier–Stokes equations, and can produce very high-resolution(1–5 m) wind fields of a complex neighborhood scale urban building canopy(~ 1 km ×1km) in less than 3 min when run on a personal computer.
基金funded by the National Natural Science Foundation of China(11402190)the China Postdoctoral Science Foundation(2014M552443)the Natural Science Foundation of Shaanxi Province(2013JQ2001)
文摘This paper studies the evolution of crescent-shaped dune under the influence of injected flux. A scaling law and a wind tunnel experiment are carried out for comparison. The experiment incorporates a novel image processing algorithm to recover the evolutionary process. The theoretical and experimental results agree well in the middle stage of dune evolution, but deviate from each other in the initial and final stages, suggesting that the crescent-shaped dune evolution is intrinsically scale-variant and that the crescent shape breaks down under unsaturated condition.
基金Foundation item: Supported by the National Natural Science Foundation of China (11172241), and Northwestern Polytechnical University Foundation for Fundamental Research. (NPU-FFR- 1015)
文摘The most complicated component in cavitating flow and pressure distribution is the flow in the cavity closure line. The cavitating flow and pressure distribution provide critical aspects of flow field details in the region. The integral of pressure results of the hydrodynamic forces, indicate domination in the design of a supercavitating vehicle. An experiment was performed in a water tunnel to investigate the pressure characteristics of the cavity closure region. Ventilation methods were employed to generate artificial cavity, and the ventilation rate was adjusted accordingly to obtain the desired cavity length. An array of pressure transducers was laid down the cavity closure line to capture pressure distribution in this region. The experimental results show that there is a pressure peak in the cavity closure region, and the rise rate of pressure in space tends to be higher in the upwind side when the flow is non-axisymmetric. The transient pressure variations during the cavity formation procedure were also present. The method of measurement in this paper can be referenced by engineers. The result helps to study the flow pattern of cavity closure region, and it can also be used to analyze the formation of supercavitating vehicle hydrodynamics.
文摘This study investigated the flow characteristics around a cross-flow wind turbine. A wind tunnel experiment (WTE) was performed to measure the flow characteristics past the wind turbine when operating at the optimal tip-speed ratio of λ = 0.4. In addition, computational fluid dynamics (CFD) simulations were performed for the flow field around the wind turbine that was operating at tip-speed ratios of λ = 0.1, 0.4, and 0.7. The CFD approach was validated against the WTE measurements. CFD results confirmed that with an increase in λ, the velocity deficit was generally increased in the leeward of the return side of the wind turbine, while it was generally decreased in the leeward of the drive side of the wind turbine. It was also confirmed that with an increase in λ, the turbulence kinetic energy was generally increased in the leeward of the return side of the wind turbine, while it generally decreased in the leeward of the drive side of the wind turbine.
文摘Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics model of the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body is amended.The research indicates that the change trends of zero lift drag coefficient and lift coefficient to Mach number are similar.The calculation result and wind tunnel experiment data all verify the validity of the amended dynamics model by which to estimate the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body,and thus providing some technical reference to aerodynamics character analysis of the same types of winged rigid body.
基金supported by the National Key Technology R&D Program(No.2013BAD13B03)the Key R&D Project from Science and Technology Department of Zhejiang Province(Nos.2018C02026,2018C02040)+1 种基金the National Natural Science Foundation of China(No.31072246)the Fundamental Research Funds for the Central Universities(No.201564020)
文摘In the present work,the hydrodynamic performance of the double deflector rectangular cambered otter board was studied using wind tunnel experiment,flume tank experiment and numerical simulation.Results showed that the otter board had a good hydrodynamic performance with the maximum lift-to-drag ratio(K_(MAX) = 3.70).The flow separation occurred when the angle of attack(AOA) was at 45?,which revealed that the double deflector structure of the otter board can delay the flow separation.Numerical simulation results showed a good agreement with experiment ones,and could predict the critical AOA,which showed that it can be used to study the hydrodynamic performance of the otter board with the advantage of flow visualization.However,the drag coefficient in flume tank was much higher than that in wind tunnel,which resulted in a lower lift-to-drag ratio.These may be due to different fluid media between flume tank and wind tunnel,which result in the big difference of the vortexes around the otter board.Given the otter boards are operated in water,it was suggested to apply both flume tank experiment and numerical simulation to study the hydrodynamic performance of otter board.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK020109-2,2019QZKK020611)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2020-pd11).
文摘The snow is one of the most important water resources in grassland in northern and western China, while the wind blowing snow due to the strong wind there is a common phenomenon, which can lead to heavy disasters to harm the local animal husbandry and transportation. A reasonable arrangement of the snow protection forests is one of the most economical and effective methods to prevent the wind blowing snow, and a great number of investigations were carried out for its wind block effects. However, the deposition patterns of the snowfall and the blowing snow in the forests are still largely unknown. In this study, the wind tunnel experiments are performed to investigate the influences of the vegetation (grass and bush) on the wind speed profiles and the spatial distribution of the accumulated snow, by using the bran as the snow substitute. The snow blocking abilities of two bush models are analyzed to show the effects of different coverages. The results show that the grass and the bush have different effects on the wind speed profiles, and the snow-blocking abilities of the vegetation and the resulting spatial distribution are determined by the amount of the snowfall, the wind speed, and the height and the coverage of the vegetation. For the engineering design, if the snow is required on the windward side of the vegetation or in the vegetation, the densely arranged forest belts are needed, if the snow is required to accumulate on the leeward side of the vegetation, the sparse forest belts can be used. This work would be helpful as a reference to the reasonable arrangement of the snow-protection forests in pastoral areas.
文摘A flow field around a streamlined body at an intermediate angle of incidence is dominated by cross-flow separation and vortical flow fields. The separated flow leads to a pair of vortices on the leeside of the body; therefore, it is essential to accurately determine this pair and estimate its size and location. This study utilizes the element-based finite volume method based on RANS equations to compute a 3D axisymmetric flow around a SUBOFF bare submarined hull. Cross-flow vortex structures are then numerically simulated and compared for a submarine with SUBOFF and DRDC STR bows. Computed results of pressure and shear stress distribution on the hull surface and the strength and locations of the vortex structures are presented at an intermediate incidence angle of 20°. A wind tunnel experiment is also conducted to experimentally visualize the vortex structures and measure their core locations. These experimental results are compared with the numerical data, and a good agreement is found.
文摘Wind force coefficients for designing porous canopy roofs have been investigated based on a series of wind tunnel experiments. Gable, troughed and mono-sloped roofs were tested. The roof models were made of 0.5 mm thick perforated duralumin plates, the porosity of which was changed from 0 to about 0.4. Overall aerodynamic forces and moments acting on the roof model were measured in a turbulent boundary layer with a six-component force balance for various wind directions. The results indicate that the wind loads on canopy roofs generally decrease with an increase in porosity of the roof. Assuming that the roof is rigid and supported by the four corner columns with no walls, the axial forces induced in the columns are regarded as the most important load effect for discussing the design wind loads. Two loading patterns causing the maximum tension and compression in the columns are considered. Based on a combination of the lift and moment coefficients, the design wind force coefficients on the windward and leeward halves of the roof are presented for the two loading patterns as a function of the roof pitch and porosity. The effect of porosity is taken into account as a reduction factor of the wind loads.