期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
An Explicit Difference Scheme with High Accuracy and Branching Stability for Solving Parabolic Partial Differential Equation 被引量:4
1
作者 马明书 王肖凤 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第4期98-103,共6页
This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△... This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2. 展开更多
关键词 parabolic type equation explicit difference scheme high accuracy branching stability truncation er
下载PDF
A High-order Accuracy Explicit Difference Scheme with Branching Stability for Solving Higher-dimensional Heat-conduction Equation 被引量:3
2
作者 MA Ming-shu MA Ju-yi +1 位作者 GU Shu-min ZHU Lin-lin 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第3期446-452,共7页
A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncatio... A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncation error is O(△t^2 + △x^4). 展开更多
关键词 heat-conduction equation explicit difference scheme high-order accuracy branching stability
下载PDF
Computational Stability of the Explicit Difference Schemes of the Forced Dissipative Nonlinear Evolution Equations 被引量:1
3
作者 林万涛 季仲贞 王斌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第3期413-417,共5页
The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the ... The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the forced dissipative nonlinear atmospheric equations is obtained on account of the concept of computational quasi-stability, Therefore, it provides the new train of thought and theoretical basis for designing computational stable difference scheme of the forced dissipative nonlinear atmospheric equations. Key words Computational quasi-stability - Computational stability - Forced dissipative nonlinear evolution equation - Explicit difference scheme This work was supported by the National Outstanding Youth Scientist Foundation of China (Grant No. 49825109), the Key Innovation Project of Chinese Academy of Sciences (KZCX1-10-07), the National Natural Science Foundation of China (Grant Nos, 49905007 and 49975020) and the Outstanding State Key Laboratory Project (Grant No. 40023001). 展开更多
关键词 Computational quasi-stability Computational stability Forced dissipative nonlinear evolution equation explicit difference scheme
下载PDF
A CLASS OF TWO-LEVEL EXPLICIT DIFFERENCE SCHEMES FOR SOLVING THREE DIMENSIONAL HEAT CONDUCTION EQUATION 被引量:1
4
作者 曾文平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第9期1071-1078,共8页
A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh rat... A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh ratio r = Deltat/(Deltax)(2) = Deltat/(Deltay)(2) = Deltat/(Deltaz)(2) less than or equal to 1/2, which is better than that of all the other explicit difference schemes. And when the order of truncation error is 0((Deltat)(2) + (Deltax)(4)), the stability condition is r less than or equal to 1/6, which contains the known results. 展开更多
关键词 three-dimensional heat conduction equation explicit difference scheme truncation error stability condition
下载PDF
A Class of High Accuracy Explicit Difference Schemes for Solving the Heat-conduction Equation of High-dimension 被引量:1
5
作者 CHEN Zhen-zhong MA Xiao-xia 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第2期236-243,共8页
In this paper, a class of explicit difference schemes with parameters for solving five-dimensional heat-conduction equation are constructed and studied.the truncation error reaches O(τ^2+ h%4), and the stability c... In this paper, a class of explicit difference schemes with parameters for solving five-dimensional heat-conduction equation are constructed and studied.the truncation error reaches O(τ^2+ h%4), and the stability condition is given. Finally, the numerical examples and numerical results are presented to show the advantage of the schemes and the correctness of theoretical analysis. 展开更多
关键词 heat-conduction equation explicit difference scheme truncation error conditional stability
下载PDF
A FAMILY OF HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEMES WITH BRANCHING STABILITY FOR SOLVING 3-D PARABOLIC PARTIAL DIFFERENTIAL EQUATION
6
作者 马明书 王同科 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第10期1207-1212,共6页
A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and t... A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and the truncation error is 0(<Delta>t(2) + Deltax(4)). 展开更多
关键词 high-order accuracy explicit difference scheme branching stability 3-D parabolic PDE
下载PDF
A Compact Explicit Difference Scheme of High Accuracy for Extended Boussinesq Equations
7
作者 周俊陶 林建国 谢志华 《China Ocean Engineering》 SCIE EI 2007年第3期507-514,共8页
Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at pr... Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at predicting stage, a cubic spline function is adopted at correcting stage, which made the time discretization accuracy up to fourth order; For spatial discretization, a three-point explicit compact difference scheme with arbitrary order accuracy is employed. The extended Boussinesq equations derived by Beji and Nadaoka are solved by the proposed scheme. The numerical results agree well with the experimental data. At the same time, the comparisons of the two numerical results between the present scheme and low accuracy difference method are made, which further show the necessity of using high accuracy scheme to solve the extended Boussinesq equations. As a valid sample, the wave propagation on the rectangular step is formulated by the present scheme, the modelled results are in better agreement with the experimental data than those of Kittitanasuan. 展开更多
关键词 high accuracy numerical simulation compact explicit difference scheme extended Boussinesq equations
下载PDF
A Class of Two-level High-order Accuracy Explicit Difference Scheme for Solving 3-D Parabolic Partial Differential Equation
8
作者 WANG Tong-ke,MA Ming-shu,REN Zong-xiu (College of Mathematics and Information Science, Henan Normal University,Xinxiang 453002,China) 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第1期17-20,共4页
A class of two-level high-order accuracy explicit difference scheme for solving 3-D parabolic P.D.E is constructed. Its truncation error is (Δt2+Δx4) and the stability condition is r=Δt/Δx2=Δt/Δy2=Δt/Δz2≤1/6.
关键词 D parabolic P.E.E. explicit difference scheme truncation error
下载PDF
A NEW HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEME FOR SOLVING THREE-DIMENSIONAL PARABOLIC EQUATIONS
9
作者 马明书 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第5期497-501,共5页
In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gam... In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gamma(2) = Delta t/Delta z(2) less than or equal to 1/4, and the truncation error is O(Delta t(2) + Delta x(4)). 展开更多
关键词 high-order accuracy explicit difference scheme three-dimensional parabolic equation
全文增补中
THE HIGH ACCURACY EXPLICIT DIFFERENCE SCHEME FOR SOLVING PARABOLIC EQUATIONS 3-DIMENSION
10
作者 孙鸿烈 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第7期88-93,共6页
In this paper, an explicit three_level symmetrical differencing scheme with parameters for solving parabolic partial differential equation of three_dimension will be considered. The stability condition and local trunc... In this paper, an explicit three_level symmetrical differencing scheme with parameters for solving parabolic partial differential equation of three_dimension will be considered. The stability condition and local truncation error for the scheme are r<1/2 and O( Δ t 2+ Δ x 4+ Δ y 4+ Δ z 4) ,respectively. 展开更多
关键词 parabolic partial differential equation of three_dimension implicit difference scheme explicit difference scheme local truncation error absolutely stable condition stable
下载PDF
A-HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEME FOR SOLVING THE EQUATION OF TWO-DIMENSIONAL PARABOLIC TYPE
11
作者 马明书 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第11期1075-1079,共5页
In this paper. a three explicit difference shcemes with high order accuracy for solving the equations of two-dimensional parabolic type is proposed. The stability condition is r=△t/△x ̄ 2=△t/△y ̄2≤1/4 and the... In this paper. a three explicit difference shcemes with high order accuracy for solving the equations of two-dimensional parabolic type is proposed. The stability condition is r=△t/△x ̄ 2=△t/△y ̄2≤1/4 and the truncation error is O (△t ̄2 + △x ̄4 ). 展开更多
关键词 high-order accuracy explicit difference scheme equation of twodimensional parabolic type
下载PDF
LONG TIME ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF EXPLICIT DIFFERENCE SCHEME FOR SEMILINEAR PARABOLIC EQUATIONS
12
作者 Hui Feng Long-jun Shen 《Journal of Computational Mathematics》 SCIE CSCD 2002年第5期543-550,共8页
Presents a study that investigated the asymptotic behavior of discrete solutions in comparison to the case of continuous solutions. Numerical representation of the problem; Details on the solution of explicit differen... Presents a study that investigated the asymptotic behavior of discrete solutions in comparison to the case of continuous solutions. Numerical representation of the problem; Details on the solution of explicit difference scheme for the corresponding nonlinear elliptic equations; Results and discussion. 展开更多
关键词 asymptotic behavior explicit difference scheme semilinear prarbolic equations
全文增补中
A fast explicit finite difference method for determination of wellhead injection pressure 被引量:2
13
作者 白冰 李小春 +2 位作者 刘明泽 石露 李琦 《Journal of Central South University》 SCIE EI CAS 2012年第11期3266-3272,共7页
A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditiona... A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected. 展开更多
关键词 wellhead pressure injection pressure bottom-hole pressure fast explicit finite difference method
下载PDF
Construction of Explicit Quasi-complete Square Conservative Difference Schemes of Forced Dissipative Nonlinear Evolution Equations 被引量:1
14
作者 林万涛 季仲贞 王斌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第4期604-612,共2页
Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmos... Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmospheric and oceanic equations is analyzed and the computationally stable explicit complete square conservative difference schemes are constructed. The theoretical analysis and numerical experiment prove that the explicit complete square conservative difference schemes are computationally stable and deserve to be disseminated. 展开更多
关键词 Forced dissipative nonlinear evolution equation explicit quasi-complete square conservative difference scheme Computational stability
下载PDF
Comments on Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD
15
作者 张红娜 宇波 +2 位作者 王艺 魏进家 李凤臣 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第5期669-676,共8页
The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechan... The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes. 展开更多
关键词 explicit compact difference scheme conventional finite difference scheme central difference scheme upwind difference scheme
下载PDF
Unified elastoplastic finite difference and its application 被引量:1
16
作者 马宗源 廖红建 党发宁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第4期457-474,共18页
Two elastoplastic constitutive models based on the unified strength the- ory (UST) are established and implemented in an explicit finite difference code, fast Lagrangian analysis of continua (FLAC/FLAC3D), which i... Two elastoplastic constitutive models based on the unified strength the- ory (UST) are established and implemented in an explicit finite difference code, fast Lagrangian analysis of continua (FLAC/FLAC3D), which includes an associated/non- associated flow rule, strain-hardening/softening, and solutions of singularities. Those two constitutive models are appropriate for metallic and strength-different (SD) materials, respectively. Two verification examples are used to compare the computation results and test data using the two-dimensional finite difference code FLAC and the finite element code ANSYS, and the two constitutive models proposed in this paper are verified. Two application examples, the large deformation of a prismatic bar and the strain-softening be- havior of soft rock under a complex stress state, are analyzed using the three-dimensional code FLAC3D. The two new elastoplastic constitutive models proposed in this paper can be used in bearing capacity evaluation or stability analysis of structures built of metallic or SD materials. The effect of the intermediate principal stress on metallic or SD mate- rial structures under complex stress states, including large deformation, three-dimensional and non-association problems, can be analyzed easily using the two constitutive models proposed in this paper. 展开更多
关键词 elastoplastic constitutive model unified strength theory explicit finite difference effect of intermediate principal stress
下载PDF
A Numerical Solution of Heat Equation for Several Thermal Diffusivity Using Finite Difference Scheme with Stability Conditions
17
作者 Wahida Zaman Loskor Rama Sarkar 《Journal of Applied Mathematics and Physics》 2022年第2期449-465,共17页
The heat equation is a second-order parabolic partial differential equation, which can be solved in many ways using numerical methods. This paper provides a numerical solution that uses the finite difference method li... The heat equation is a second-order parabolic partial differential equation, which can be solved in many ways using numerical methods. This paper provides a numerical solution that uses the finite difference method like the explicit center difference method. The forward time and centered space (FTCS) is used to a problem containing the one-dimensional heat equation and the stability condition of the scheme is reported with different thermal conductivity of different materials. In this study, results obtained for different thermal conductivity of distinct materials are compared. Also, the results reveal the well-behavior properties of the materials in good agreement. 展开更多
关键词 Heat Equation Finite-difference Scheme explicit Centered difference Scheme Thermal Diffusivity
下载PDF
An Improved Splitting Method 被引量:1
18
作者 王斌 季仲贞 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1993年第4期447-452,共6页
In this paper, an improved splitting method, based on the completely square-conservative explicit difference schemes, is established. Not only can the time-direction precision of this method be higher than that of the... In this paper, an improved splitting method, based on the completely square-conservative explicit difference schemes, is established. Not only can the time-direction precision of this method be higher than that of the traditional splitting methods but also can the physical feature of mutual dependence of the fast and the slow stages that are calculated separately and splittingly be kept as well. Moreover, the method owns an universality, it can be generalized to other square-conservative difference schemes, such as the implicit and complete ones and the explicit and instantaneous ones. Good time benefits can be acquired when it is applied in the numerical simulations of the monthly mean currents of the South China Sea. 展开更多
关键词 Improved splitting method Complete square conservatism explicit difference scheme Second order precision Economical method
下载PDF
A Study of Two Dimensional Unsteady MHD Free Convection Flow over a Vertical Plate 被引量:1
19
作者 Absana Tarammim Mohammad Sharif Ullah Mohammed Jahir Uddin 《Open Journal of Fluid Dynamics》 2020年第4期342-355,共14页
In this paper, unsteady free convection heat transfer flow over a vertical plate in the presence of a magnetic field is discussed in detail. The dimensionless partial differential equations of continuity, momentum alo... In this paper, unsteady free convection heat transfer flow over a vertical plate in the presence of a magnetic field is discussed in detail. The dimensionless partial differential equations of continuity, momentum along energy are analyzed with suitable transformations. For numerical calculation, an implicit finite difference method is applied to solve a set of nonlinear dimensionless partial differential equations. Dimensionless velocity and temperature profile are also investigated due to the effects of assumed parameters in the concerned problem. An explicit finite difference technique is used to compute velocity and temperature profiles. The stability conditions are also examined. 展开更多
关键词 Free Convection Heat Transfer Flow Magnetic Field explicit Finite difference Method
下载PDF
Unsteady Electromagnetic Free Convection Micropolar Fluid Flow through a Porous Medium along a Vertical Porous Plate 被引量:1
20
作者 Mohammad Rafiqul Islam Sonia Nasrin Md. Mahmud Alam 《Open Journal of Applied Sciences》 2020年第11期701-718,共18页
Unsteady electromagnetic free convection flows of two-dimensional micropolar fluid through in a porous medium parallel to a vertical porous plate have been investigated numerically. Similarity analysis has been used t... Unsteady electromagnetic free convection flows of two-dimensional micropolar fluid through in a porous medium parallel to a vertical porous plate have been investigated numerically. Similarity analysis has been used to transform the governing equations into its non-dimensional form by using the explicit finite difference method to obtain numerical solutions. Estimated results have been gained for various values of Prandtl number, Grashof number, material parameters, micropolar parameter, electric conductivity, electric permeability, thermal relaxation time and the permeability of the porous medium. The effect<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> of pertinent parameters on the velocity, electric induction, magnetic induction, microrotation and temperature distributions have been investigated briefly and illustrate</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> graphically.</span> 展开更多
关键词 Micropolar Fluid Free Convection Porous Medium explicit Finite difference
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部