Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this...Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this paper, for the sake of illustrating in detail how dynamic explicit finite element method is applied to the numerical simulation of the autobody panel forming process,an example of optimization of stamping process pain meters of an inner door panel is presented. Using dynamic explicit finite element code Ls-DYNA3D, the inner door panel has been optimized by adapting pa- rameters such as the initial blank geometry and position, blank-holder forces and the location of drawbeads, and satisfied results are obtained.展开更多
Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combin...Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combination with the source time function with improved transmitting artificial boundary and with high-frequency vibration contained. The results indicate that the improved artificial boundary is stable in numerical computation and the predicted strong ground motion has a consistent characteristic with the observed motion.展开更多
This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the fi...This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc.展开更多
In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on ...In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium, elastic single-phase medium and ideal fluid medium. This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling, and which does not need to solve sys-tem of linear equations. The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water, dam, sediment and basement rock. The vertical displacement at the top point of the dam is calculated and some conclusions are given.展开更多
An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite...An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.展开更多
The mechanical properties of multi-lead rubber bearings (MLRBs) were investigated by experiment and finite element analysis. First, the vertical stiffness, horizontal stiffness and yielded shear force were tested fo...The mechanical properties of multi-lead rubber bearings (MLRBs) were investigated by experiment and finite element analysis. First, the vertical stiffness, horizontal stiffness and yielded shear force were tested for four MLRB specimens and two specimens of the single-lead rubber bearings ( SLRBs). Then, the MLRBs were modeled by the explicit finite element analysis software ANSYS/ LS-DYNA, in order to evaluate the horizontal force-displacement hysteretic curves under static vertical and dynamical horizontal loadings. The disagreement between the tested and theoretical values was less than 11.4%, and MLRBs and SLRBs were similar in vertical stiffness, pre-yield stiffness and yield stiffness.展开更多
In numerical simulation of wave scattering under oblique incident body waves using the finite element method, the free field motion at the incident lateral boundary induced by the background layered half-space complic...In numerical simulation of wave scattering under oblique incident body waves using the finite element method, the free field motion at the incident lateral boundary induced by the background layered half-space complicates the computational area. In order to replace the complex frequency domain method, a time-domain method to calculate the free field motion of a layered half-space subjected to oblique incident body waves is developed in this paper. The new method decouples the equations of motion used in the finite element method and offers an interpolation formula of the free field motion. This formula is based on the fact that the apparent horizontal velocity of the free field motion is constant and can be calculated exactly. Both the theoretical analysis and numerical results demonstrate that the proposed method offers a high degree of accuracy.展开更多
The structural performance of perforated steel columns(PSCs)is significantly more complex than the one of solid web I-shaped elements under the diversity of blast loading scenarios.The damage criterion of PSCs is not ...The structural performance of perforated steel columns(PSCs)is significantly more complex than the one of solid web I-shaped elements under the diversity of blast loading scenarios.The damage criterion of PSCs is not only related to initial deformation response during the blast but also the residual axial load capacity and it can be considered as a reliable index after the blast effects.Therefore,the PSCs damages will be studied in two stages;direct and post blast effects.In the present study,the dynamic response of PSCs was numerically evaluated under different levels of blast threats using LS-DYNA software.Extensive explicit finite element(FE)analyses are carried out to investigate the effect of various parameters,such as web opening shapes,boundary conditions and strengthening details on the damage index and toughness of the PSCs compared to the parent steel sections.The results of the comparative study show that the damage and toughness decrease when the support condition changes from pinned to fixed ends through the two stages of loadings.PSCs give high toughness compared to its parent sections during blast shock stage while,a remarkable decrease in toughness is observed during the application of axial gravity after blast shock.Furthermore,the web opening shapes have slight effects on the global dynamic behavior of PSCs,particularly in terms of residual capacity.On the contrary,the retrofitting strategy using both closed holes at end and vertical stiffeners have an effective enhancement to get higher toughness in case of the extreme blasts.展开更多
A new two stage detonation forming machine was developed and cylindrical aluminum cups were formed by using gas detonation forming technology. The forming process was analyzed with the explicit finite element method w...A new two stage detonation forming machine was developed and cylindrical aluminum cups were formed by using gas detonation forming technology. The forming process was analyzed with the explicit finite element method with various parameters and ANSYS/LS-DYNA software. Defects of wrinkling and rupture were predicted for some forming conditions. The strain and the thickness distribution results were in good agreement with the experimental results. It was seen that thinning and forming mainly take place during the one fourth of the time. The effects of detonation pressure and blank holding force on the deformation of the work pieces were discussed. The numerical results were compared with those obtained in the experiments.展开更多
Computational models provide additional tools for studying the brain,however,many techniques are currently disconnected from each other.There is a need for new computational approaches that span the range of physics o...Computational models provide additional tools for studying the brain,however,many techniques are currently disconnected from each other.There is a need for new computational approaches that span the range of physics operating in the brain.In this review paper,we offer some new perspectives on how the embedded element method can fill this gap and has the potential to connect a myriad of modeling genre.The embedded element method is a mesh superposition technique used within finite element analysis.This method allows for the incorporation of axonal fiber tracts to be explicitly represented.Here,we explore the use of the approach beyond its original goal of predicting axonal strain in brain injury.We explore the potential application of the embedded element method in areas of electrophysiology,neurodegeneration,neuropharmacology and mechanobiology.We conclude that this method has the potential to provide us with an integrated computational framework that can assist in developing improved diagnostic tools and regeneration technologies.展开更多
文摘Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this paper, for the sake of illustrating in detail how dynamic explicit finite element method is applied to the numerical simulation of the autobody panel forming process,an example of optimization of stamping process pain meters of an inner door panel is presented. Using dynamic explicit finite element code Ls-DYNA3D, the inner door panel has been optimized by adapting pa- rameters such as the initial blank geometry and position, blank-holder forces and the location of drawbeads, and satisfied results are obtained.
基金Heilongjiang Province Postdoctoral Science Foundation and China Earthquake Administration’s Tenth Five-year Plan Project
文摘Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combination with the source time function with improved transmitting artificial boundary and with high-frequency vibration contained. The results indicate that the improved artificial boundary is stable in numerical computation and the predicted strong ground motion has a consistent characteristic with the observed motion.
文摘This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc.
基金National Natural Scienccs Foundation of China (50178005).
文摘In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium, elastic single-phase medium and ideal fluid medium. This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling, and which does not need to solve sys-tem of linear equations. The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water, dam, sediment and basement rock. The vertical displacement at the top point of the dam is calculated and some conclusions are given.
文摘An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.
文摘The mechanical properties of multi-lead rubber bearings (MLRBs) were investigated by experiment and finite element analysis. First, the vertical stiffness, horizontal stiffness and yielded shear force were tested for four MLRB specimens and two specimens of the single-lead rubber bearings ( SLRBs). Then, the MLRBs were modeled by the explicit finite element analysis software ANSYS/ LS-DYNA, in order to evaluate the horizontal force-displacement hysteretic curves under static vertical and dynamical horizontal loadings. The disagreement between the tested and theoretical values was less than 11.4%, and MLRBs and SLRBs were similar in vertical stiffness, pre-yield stiffness and yield stiffness.
基金National Natural Science Foundation of China Under Grant No. 50178065
文摘In numerical simulation of wave scattering under oblique incident body waves using the finite element method, the free field motion at the incident lateral boundary induced by the background layered half-space complicates the computational area. In order to replace the complex frequency domain method, a time-domain method to calculate the free field motion of a layered half-space subjected to oblique incident body waves is developed in this paper. The new method decouples the equations of motion used in the finite element method and offers an interpolation formula of the free field motion. This formula is based on the fact that the apparent horizontal velocity of the free field motion is constant and can be calculated exactly. Both the theoretical analysis and numerical results demonstrate that the proposed method offers a high degree of accuracy.
文摘The structural performance of perforated steel columns(PSCs)is significantly more complex than the one of solid web I-shaped elements under the diversity of blast loading scenarios.The damage criterion of PSCs is not only related to initial deformation response during the blast but also the residual axial load capacity and it can be considered as a reliable index after the blast effects.Therefore,the PSCs damages will be studied in two stages;direct and post blast effects.In the present study,the dynamic response of PSCs was numerically evaluated under different levels of blast threats using LS-DYNA software.Extensive explicit finite element(FE)analyses are carried out to investigate the effect of various parameters,such as web opening shapes,boundary conditions and strengthening details on the damage index and toughness of the PSCs compared to the parent steel sections.The results of the comparative study show that the damage and toughness decrease when the support condition changes from pinned to fixed ends through the two stages of loadings.PSCs give high toughness compared to its parent sections during blast shock stage while,a remarkable decrease in toughness is observed during the application of axial gravity after blast shock.Furthermore,the web opening shapes have slight effects on the global dynamic behavior of PSCs,particularly in terms of residual capacity.On the contrary,the retrofitting strategy using both closed holes at end and vertical stiffeners have an effective enhancement to get higher toughness in case of the extreme blasts.
文摘A new two stage detonation forming machine was developed and cylindrical aluminum cups were formed by using gas detonation forming technology. The forming process was analyzed with the explicit finite element method with various parameters and ANSYS/LS-DYNA software. Defects of wrinkling and rupture were predicted for some forming conditions. The strain and the thickness distribution results were in good agreement with the experimental results. It was seen that thinning and forming mainly take place during the one fourth of the time. The effects of detonation pressure and blank holding force on the deformation of the work pieces were discussed. The numerical results were compared with those obtained in the experiments.
基金support provided by Computational Fluid Dynamics Research Corporation(CFDRC)under a sub-contract funded by the Department of Defense,Department of Health Program through contract W81XWH-14-C-0045
文摘Computational models provide additional tools for studying the brain,however,many techniques are currently disconnected from each other.There is a need for new computational approaches that span the range of physics operating in the brain.In this review paper,we offer some new perspectives on how the embedded element method can fill this gap and has the potential to connect a myriad of modeling genre.The embedded element method is a mesh superposition technique used within finite element analysis.This method allows for the incorporation of axonal fiber tracts to be explicitly represented.Here,we explore the use of the approach beyond its original goal of predicting axonal strain in brain injury.We explore the potential application of the embedded element method in areas of electrophysiology,neurodegeneration,neuropharmacology and mechanobiology.We conclude that this method has the potential to provide us with an integrated computational framework that can assist in developing improved diagnostic tools and regeneration technologies.