We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the...We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.展开更多
Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this...Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this paper, for the sake of illustrating in detail how dynamic explicit finite element method is applied to the numerical simulation of the autobody panel forming process,an example of optimization of stamping process pain meters of an inner door panel is presented. Using dynamic explicit finite element code Ls-DYNA3D, the inner door panel has been optimized by adapting pa- rameters such as the initial blank geometry and position, blank-holder forces and the location of drawbeads, and satisfied results are obtained.展开更多
As a novel kind of particle method for explicit dynamics,the finite particle method(FPM)does not require the formation or solution of global matrices,and the evaluations of the element equivalent forces and particle d...As a novel kind of particle method for explicit dynamics,the finite particle method(FPM)does not require the formation or solution of global matrices,and the evaluations of the element equivalent forces and particle displacements are decoupled in nature,thus making this method suitable for parallelization.The FPM also requires an acceleration strategy to overcome the heavy computational burden of its explicit framework for time-dependent dynamic analysis.To this end,a GPU-accelerated parallel strategy for the FPM is proposed in this paper.By taking advantage of the independence of each step of the FPM workflow,a generic parallelized computational framework for multiple types of analysis is established.Using the Compute Unified Device Architecture(CUDA),the GPU implementations of the main tasks of the FPM,such as evaluating and assembling the element equivalent forces and solving the kinematic equations for particles,are elaborated through careful thread management and memory optimization.Performance tests show that speedup ratios of 8,25 and 48 are achieved for beams,hexahedral solids and triangular shells,respectively.For examples consisting of explicit dynamic analyses of shells and solids,comparisons with Abaqus using 1 to 8 CPU cores validate the accuracy of the results and demonstrate a maximum speed improvement of a factor of 11.2.展开更多
In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on ...In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium, elastic single-phase medium and ideal fluid medium. This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling, and which does not need to solve sys-tem of linear equations. The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water, dam, sediment and basement rock. The vertical displacement at the top point of the dam is calculated and some conclusions are given.展开更多
A new family of explicit pseudodynamic algorithms is proposed for general pseudodynamic testing. One particular subfamily seems very promising for use in general pseudodynamic testing since the stability problem for a...A new family of explicit pseudodynamic algorithms is proposed for general pseudodynamic testing. One particular subfamily seems very promising for use in general pseudodynamic testing since the stability problem for a structure does not need to be considered. This is because this subfamily is unconditionally stable for any instantaneous stiffness softening system, linear elastic system and instantaneous stiffness hardening system that might occur in the pseudodynamic testing of a real structure. In addition, it also offers good accuracy when compared to a general second-order accurate method for both linear elastic and nonlinear systems.展开更多
One of the practical approaches in identifying structures is the non-linear resonant decay method which identifies a non-linear dynamic system utilizing a model based on linear modal space containing the underlying li...One of the practical approaches in identifying structures is the non-linear resonant decay method which identifies a non-linear dynamic system utilizing a model based on linear modal space containing the underlying linear system and a small number of extra terms that exhibit the non-linear effects.In this paper,the method is illustrated in a simulated system and an experimental structure.The main objective of the non-linear resonant decay method is to identify the non-linear dynamic systems based on the use of a multi-shaker excitation using appropriated excitation which is obtained from the force appropriation approach.The experimental application of the method is indicated to provide suitable estimates of modal parameters for the identification of non-linear models of structures.展开更多
It has been proven that the implicit method used to solve the vibration equation can be transformed into an explicit method,which is called the concomitant explicit method.The constant acceleration method's concom...It has been proven that the implicit method used to solve the vibration equation can be transformed into an explicit method,which is called the concomitant explicit method.The constant acceleration method's concomitant explicit method was used as an example and is described in detail in this paper.The relationship between the implicit method and explicit method is defined,which provides some guidance about how to create a new explicit method that has high precision and computational efficiency.展开更多
The paper starts with a brief overview to the necessity of sheet metal forming simulation and the complexity of automobile panel forming, then leads to finite element analysis (FEA) which is a powerful simulation too...The paper starts with a brief overview to the necessity of sheet metal forming simulation and the complexity of automobile panel forming, then leads to finite element analysis (FEA) which is a powerful simulation tool for analyzing complex three-dimensional sheet metal forming problems. The theory and features of the dynamic explicit finite element methods are introduced and the available various commercial finite element method codes used for sheet metal forming simulation in the world are discussed,and the civil and international status quo of automobile panel simulation as well. The front door outer panel of one certain new automobile is regarded as one example that the dynamic explicit FEM code Dynaform is used for the simulation of the front door outer panel forming process. Process defects such as ruptures are predicted. The improving methods can be given according to the simulation results. Foreground of sheet metal forming simulation is outlined.展开更多
基金funded by the SNF project 200020_204917 entitled"Structure preserving and fast methods for hyperbolic systems of conservation laws".
文摘We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.
文摘Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this paper, for the sake of illustrating in detail how dynamic explicit finite element method is applied to the numerical simulation of the autobody panel forming process,an example of optimization of stamping process pain meters of an inner door panel is presented. Using dynamic explicit finite element code Ls-DYNA3D, the inner door panel has been optimized by adapting pa- rameters such as the initial blank geometry and position, blank-holder forces and the location of drawbeads, and satisfied results are obtained.
基金the financial support provided by the National Key Research and Development Program of China(Grant No.2016YFC0800200)the National Natural Science Foundation of China(Grant Nos.51578494 and 51778568)the Fundamental Research Funds for the Central Universities(Grant No.2019QNA4043).
文摘As a novel kind of particle method for explicit dynamics,the finite particle method(FPM)does not require the formation or solution of global matrices,and the evaluations of the element equivalent forces and particle displacements are decoupled in nature,thus making this method suitable for parallelization.The FPM also requires an acceleration strategy to overcome the heavy computational burden of its explicit framework for time-dependent dynamic analysis.To this end,a GPU-accelerated parallel strategy for the FPM is proposed in this paper.By taking advantage of the independence of each step of the FPM workflow,a generic parallelized computational framework for multiple types of analysis is established.Using the Compute Unified Device Architecture(CUDA),the GPU implementations of the main tasks of the FPM,such as evaluating and assembling the element equivalent forces and solving the kinematic equations for particles,are elaborated through careful thread management and memory optimization.Performance tests show that speedup ratios of 8,25 and 48 are achieved for beams,hexahedral solids and triangular shells,respectively.For examples consisting of explicit dynamic analyses of shells and solids,comparisons with Abaqus using 1 to 8 CPU cores validate the accuracy of the results and demonstrate a maximum speed improvement of a factor of 11.2.
基金National Natural Scienccs Foundation of China (50178005).
文摘In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium, elastic single-phase medium and ideal fluid medium. This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling, and which does not need to solve sys-tem of linear equations. The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water, dam, sediment and basement rock. The vertical displacement at the top point of the dam is calculated and some conclusions are given.
基金Science Council, Chinese Taipei Under Grant No. NSC-95-2221-E-027-099
文摘A new family of explicit pseudodynamic algorithms is proposed for general pseudodynamic testing. One particular subfamily seems very promising for use in general pseudodynamic testing since the stability problem for a structure does not need to be considered. This is because this subfamily is unconditionally stable for any instantaneous stiffness softening system, linear elastic system and instantaneous stiffness hardening system that might occur in the pseudodynamic testing of a real structure. In addition, it also offers good accuracy when compared to a general second-order accurate method for both linear elastic and nonlinear systems.
文摘One of the practical approaches in identifying structures is the non-linear resonant decay method which identifies a non-linear dynamic system utilizing a model based on linear modal space containing the underlying linear system and a small number of extra terms that exhibit the non-linear effects.In this paper,the method is illustrated in a simulated system and an experimental structure.The main objective of the non-linear resonant decay method is to identify the non-linear dynamic systems based on the use of a multi-shaker excitation using appropriated excitation which is obtained from the force appropriation approach.The experimental application of the method is indicated to provide suitable estimates of modal parameters for the identification of non-linear models of structures.
基金Fundamental Research Funds for the Central Universities
文摘It has been proven that the implicit method used to solve the vibration equation can be transformed into an explicit method,which is called the concomitant explicit method.The constant acceleration method's concomitant explicit method was used as an example and is described in detail in this paper.The relationship between the implicit method and explicit method is defined,which provides some guidance about how to create a new explicit method that has high precision and computational efficiency.
文摘The paper starts with a brief overview to the necessity of sheet metal forming simulation and the complexity of automobile panel forming, then leads to finite element analysis (FEA) which is a powerful simulation tool for analyzing complex three-dimensional sheet metal forming problems. The theory and features of the dynamic explicit finite element methods are introduced and the available various commercial finite element method codes used for sheet metal forming simulation in the world are discussed,and the civil and international status quo of automobile panel simulation as well. The front door outer panel of one certain new automobile is regarded as one example that the dynamic explicit FEM code Dynaform is used for the simulation of the front door outer panel forming process. Process defects such as ruptures are predicted. The improving methods can be given according to the simulation results. Foreground of sheet metal forming simulation is outlined.