期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stability conditions of explicit integration algorithms when using 3D viscoelastic artificial boundaries
1
作者 Bao Xin Liu Jingbo +2 位作者 Li Shutao Wang Fei Lu Xihuan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第4期929-945,共17页
Viscoelastic artificial boundaries are widely adopted in numerical simulations of wave propagation problems.When explicit time-domain integration algorithms are used,the stability condition of the boundary domain is s... Viscoelastic artificial boundaries are widely adopted in numerical simulations of wave propagation problems.When explicit time-domain integration algorithms are used,the stability condition of the boundary domain is stricter than that of the internal region due to the influence of the damping and stiffness of an viscoelastic artificial boundary.The lack of a clear and practical stability criterion for this problem,however,affects the reasonable selection of an integral time step when using viscoelastic artificial boundaries.In this study,we investigate the stability conditions of explicit integration algorithms when using three-dimensional(3D)viscoelastic artificial boundaries through an analysis method based on a local subsystem.Several boundary subsystems that can represent localized characteristics of a complete numerical model are established,and their analytical stability conditions are derived from and further compared to one another.The stability of the complete model is controlled by the corner regions,and thus,the global stability criterion for the numerical model with viscoelastic artificial boundaries is obtained.Next,by analyzing the impact of different factors on stability conditions,we recommend a stability coefficient for practically estimating the maximum stable integral time step in the dynamic analysis when using 3D viscoelastic artificial boundaries. 展开更多
关键词 explicit time domain integration viscoelastic artificial boundary numerical stability local subsystem transfer matrix
下载PDF
A fully-explicit discontinuous Galerkin hydrodynamic model for variably-saturated porous media
2
作者 De MAET T. HANERT E. VANCLOOSTER M. 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第4期594-607,共14页
Groundwater flows play a key role in the recharge of aquifers, the transport of solutes through subsurface systems or the control of surface runoff. Predicting these processes requires the use of groundwater models wi... Groundwater flows play a key role in the recharge of aquifers, the transport of solutes through subsurface systems or the control of surface runoff. Predicting these processes requires the use of groundwater models with their applicability directly linked to their accuracy and computational efficiency. In this paper, we present a new method to model water dynamics in variably- saturated porous media. Our model is based on a fully-explicit discontinuous-Galerkin formulation of the 3D Richards equation, which shows a perfect scaling on parallel architectures. We make use of an adapted jump penalty term for the discontinuous-Galerkin scheme and of a slope limiter algorithm to produce oscillation-free exactly conservative solutions. We show that such an approach is particularly well suited to infiltration fronts. The model results are in good agreement with the reference model Hydrus-lD and seem promising for large scale applications involving a coarse representation of saturated soil. 展开更多
关键词 3D subsurface flow model discontinuous Galerkin method slope limiters explicit time integration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部