Stochastic heat conduction and thermal stress analysis of structures has received considerable attention in recent years.The propagation of uncertain thermal environments will lead to stochastic variations in temperat...Stochastic heat conduction and thermal stress analysis of structures has received considerable attention in recent years.The propagation of uncertain thermal environments will lead to stochastic variations in temperature fields and thermal stresses.Therefore,it is reasonable to consider the variability of thermal environments while conducting thermal analysis.However,for ambient thermal excitations,only stationary random processes have been investigated thus far.In this study,the highly efficient explicit time-domain method(ETDM)is proposed for the analysis of non-stationary stochastic transient heat conduction and thermal stress problems.The explicit time-domain expressions of thermal responses are first constructed for a thermoelastic body.Then the statistical moments of thermal displacements and stresses can be directly obtained based on the explicit expressions of thermal responses.A numerical example involving non-stationary stochastic internal heat generation rate is investigated.The accuracy and efficiency of the proposed method are validated by comparison with the Monte-Carlo simulation.展开更多
With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) meth...With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) method. The reflection of the ABC caused by both the truncated error and the phase velocity error is analyzed. Based on the phase velocity estimation and the nonuniform cell, two methods are studied and then adopted to improve the performance of the ABC. A calculation case of a rectangular waveguide which is a typical dispersive transmission line is carried out using the ADI-FDTD method with the improved ABC for evaluation. According to the calculated case, the comparison is given between the reflection coefficients of the ABC with and without the velocity estimation and also the comparison between the reflection coefficients of the ABC with and without the nonuniform processing. The reflection variation of the ABC under different time steps is also analyzed and the acceptable worsening will not obscure the improvement on the absorption. Numerical results obviously show that efficient improvement on the absorbing performance of the ABC is achieved based on these methods for the ADI-FDTD.展开更多
基金funded by the National Natural Science Foundation of China (51678252)the Guangzhou Science and Technology Project (201804020069)
文摘Stochastic heat conduction and thermal stress analysis of structures has received considerable attention in recent years.The propagation of uncertain thermal environments will lead to stochastic variations in temperature fields and thermal stresses.Therefore,it is reasonable to consider the variability of thermal environments while conducting thermal analysis.However,for ambient thermal excitations,only stationary random processes have been investigated thus far.In this study,the highly efficient explicit time-domain method(ETDM)is proposed for the analysis of non-stationary stochastic transient heat conduction and thermal stress problems.The explicit time-domain expressions of thermal responses are first constructed for a thermoelastic body.Then the statistical moments of thermal displacements and stresses can be directly obtained based on the explicit expressions of thermal responses.A numerical example involving non-stationary stochastic internal heat generation rate is investigated.The accuracy and efficiency of the proposed method are validated by comparison with the Monte-Carlo simulation.
基金The National Natural Science Foundation of China(No.60702027)the Free Research Fund of the National Mobile Communications Research Laboratory of Southeast University (No.2008B07)the National Basic Research Program of China(973 Program)(No.2007CB310603)
文摘With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) method. The reflection of the ABC caused by both the truncated error and the phase velocity error is analyzed. Based on the phase velocity estimation and the nonuniform cell, two methods are studied and then adopted to improve the performance of the ABC. A calculation case of a rectangular waveguide which is a typical dispersive transmission line is carried out using the ADI-FDTD method with the improved ABC for evaluation. According to the calculated case, the comparison is given between the reflection coefficients of the ABC with and without the velocity estimation and also the comparison between the reflection coefficients of the ABC with and without the nonuniform processing. The reflection variation of the ABC under different time steps is also analyzed and the acceptable worsening will not obscure the improvement on the absorption. Numerical results obviously show that efficient improvement on the absorbing performance of the ABC is achieved based on these methods for the ADI-FDTD.