Using the methods of dynamical systems for the (n + 1)-dimensional multiple sine-Gordon equation, the existences of uncountably infinite many periodic wave solutions and breaking bounded wave solutions are obtained. F...Using the methods of dynamical systems for the (n + 1)-dimensional multiple sine-Gordon equation, the existences of uncountably infinite many periodic wave solutions and breaking bounded wave solutions are obtained. For the double sine-Gordon equation, the exact explicit parametric representations of the bounded traveling solutions are given. To guarantee the existence of the above solutions, all parameter conditions are determined.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 11671179)the Natural Science Foundation of Yunnan Province (Grant No. 2005A0092M).
文摘Using the methods of dynamical systems for the (n + 1)-dimensional multiple sine-Gordon equation, the existences of uncountably infinite many periodic wave solutions and breaking bounded wave solutions are obtained. For the double sine-Gordon equation, the exact explicit parametric representations of the bounded traveling solutions are given. To guarantee the existence of the above solutions, all parameter conditions are determined.