A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small sphe...A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small spherical explosive charge generated in rock, is used to further study the triggering time of strain gauges installed in radial direction at same distances but different positions surrounding a cylindrical explosive charge in rock. The duration of the first compression phase and peak value of strain wave, and furthermore, their differences are analyzed and some explanations are given. Besides that, the gauge orientation in which the maximum peak value occurs is also discussed. At last, the effect of velocity of detonation(V.O.D.) of a cylindrical explosive charge on the strain waves generated in the surrounding rock is taken as key research and the pattern of peak amplitude of a strain wave varies with the V.O.D. is likely to have been found.展开更多
To further explore the damage characteristics and impact response of the shaped charge to the solid rocket engine(SRE) in storage or transportation, protective armor was designed and the shelled charges model(SCM)/SRE...To further explore the damage characteristics and impact response of the shaped charge to the solid rocket engine(SRE) in storage or transportation, protective armor was designed and the shelled charges model(SCM)/SRE with protective armor impacting by shaped charge tests were conducted. Air overpressures at 5 locations and axial acceleration caused by the explosion were measured, and the experimental results were compared with two air overpressure curves of propellant detonation obtained by related scholars. Afterwards, the finite element software AUTODYN was used to simulate the SCM impacted process and SRE detonation results. The penetration process and the formation cause of damage were analyzed. The detonation performance of TNT, reference propellant, and the propellant used in this experiment was compared. The axial acceleration caused by the explosion was also analyzed.By comprehensive comparison, the energy released by the detonation of this propellant is larger, and the HMX or Al particles contained in this propellant are more than the reference propellant, with a TNT equivalent of 1.168-1.196. Finally, advanced protection armor suggestions were proposed based on the theory of woven fabric rubber composite armor(WFRCA).展开更多
Aluminum(Al) powders are used in composite explosives as a typical reducing agent for improving explosion performance. To understand energy release of aluminum in aluminized RDX-based explosives, a series of thermal...Aluminum(Al) powders are used in composite explosives as a typical reducing agent for improving explosion performance. To understand energy release of aluminum in aluminized RDX-based explosives, a series of thermal measurements and underwater explosion(UNDEX) experiments were conducted. Lithium fluoride(LiF) was added in RDX-based explosives, as a replacement of aluminum, and used in constant temperature calorimeter experiments and UNDEXs. The influence of aluminum powder on explosion heat(Qv) was measured. A rich supply of data about aluminum energy release rate was gained. There are other oxides(CO2, CO, and H2O) in detonation products besides alumina when the content of RDX is maintained at the same levels. Aluminum cannot fully combine with oxygen in the detonation products. To study the relationship between the explosive formulation and energy release, pressure and impulse signals in underwater experiments were recorded and analyzed after charges were initiated underwater. The shock wave energy(Esk), bubble energy(Eb), and total energy(Et) monotony increase with the Al/O ratio, while the growth rates of the shock wave energy,bubble energy, and total energy become slow.展开更多
In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip shaped charges made up of a detonating cord and explosives were measured by...In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip shaped charges made up of a detonating cord and explosives were measured by a detonation velocity measuring instrument under conditions of different ignition.The experimental results and theoretical analysis show that the maximum detonation propagation velocity depends on the explosive materials with the maximum velocity among all the explosive materials.Using detonating cord in a superposition charge can shorten detonation propagation time and improve the efficiency of explosive energy.The measurement method of detonation propagation velocity and experimental results are presented and investigated.展开更多
An expanding model of the confinement of non-ideal detonation of small charge is established on the basis of the nozzle theory.Making use of the expanding model,the analytic relationship of small charge detonation vel...An expanding model of the confinement of non-ideal detonation of small charge is established on the basis of the nozzle theory.Making use of the expanding model,the analytic relationship of small charge detonation velocity and the semi-empirical relationship of detonation pressure that both change with charge diameter and confinement condition are established.The detonation velocity and pressure of small charges are calculated and experimentally verified,and the detonation velocity deviation is less than 7% while the detonation pressure deviation is less than 9%.展开更多
For shaped charges,LS-DYNA software was adopted to explore the influence of number of initiation points on the penetrator formation numerically.Changed the number of initiation points from 4 to 36,the performance of p...For shaped charges,LS-DYNA software was adopted to explore the influence of number of initiation points on the penetrator formation numerically.Changed the number of initiation points from 4 to 36,the performance of penetrator under four different kinds of typical charge diameter was analyzed,and the effect of detonation wave pressure on the liner was discussed.The minimum number of initiation points to substitute for annular initiation was obtained for each of four warheads with different charge diameters,and the curve representing the relation between the number of initiation points and charge diameter was found out also by using polynomial fitting.The simulation result provides a reference for the design of multimode warhead.展开更多
基金Projects(51304239,51374243)supported by the National Natural Science Foundation of China
文摘A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small spherical explosive charge generated in rock, is used to further study the triggering time of strain gauges installed in radial direction at same distances but different positions surrounding a cylindrical explosive charge in rock. The duration of the first compression phase and peak value of strain wave, and furthermore, their differences are analyzed and some explanations are given. Besides that, the gauge orientation in which the maximum peak value occurs is also discussed. At last, the effect of velocity of detonation(V.O.D.) of a cylindrical explosive charge on the strain waves generated in the surrounding rock is taken as key research and the pattern of peak amplitude of a strain wave varies with the V.O.D. is likely to have been found.
文摘To further explore the damage characteristics and impact response of the shaped charge to the solid rocket engine(SRE) in storage or transportation, protective armor was designed and the shelled charges model(SCM)/SRE with protective armor impacting by shaped charge tests were conducted. Air overpressures at 5 locations and axial acceleration caused by the explosion were measured, and the experimental results were compared with two air overpressure curves of propellant detonation obtained by related scholars. Afterwards, the finite element software AUTODYN was used to simulate the SCM impacted process and SRE detonation results. The penetration process and the formation cause of damage were analyzed. The detonation performance of TNT, reference propellant, and the propellant used in this experiment was compared. The axial acceleration caused by the explosion was also analyzed.By comprehensive comparison, the energy released by the detonation of this propellant is larger, and the HMX or Al particles contained in this propellant are more than the reference propellant, with a TNT equivalent of 1.168-1.196. Finally, advanced protection armor suggestions were proposed based on the theory of woven fabric rubber composite armor(WFRCA).
文摘Aluminum(Al) powders are used in composite explosives as a typical reducing agent for improving explosion performance. To understand energy release of aluminum in aluminized RDX-based explosives, a series of thermal measurements and underwater explosion(UNDEX) experiments were conducted. Lithium fluoride(LiF) was added in RDX-based explosives, as a replacement of aluminum, and used in constant temperature calorimeter experiments and UNDEXs. The influence of aluminum powder on explosion heat(Qv) was measured. A rich supply of data about aluminum energy release rate was gained. There are other oxides(CO2, CO, and H2O) in detonation products besides alumina when the content of RDX is maintained at the same levels. Aluminum cannot fully combine with oxygen in the detonation products. To study the relationship between the explosive formulation and energy release, pressure and impulse signals in underwater experiments were recorded and analyzed after charges were initiated underwater. The shock wave energy(Esk), bubble energy(Eb), and total energy(Et) monotony increase with the Al/O ratio, while the growth rates of the shock wave energy,bubble energy, and total energy become slow.
文摘In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip shaped charges made up of a detonating cord and explosives were measured by a detonation velocity measuring instrument under conditions of different ignition.The experimental results and theoretical analysis show that the maximum detonation propagation velocity depends on the explosive materials with the maximum velocity among all the explosive materials.Using detonating cord in a superposition charge can shorten detonation propagation time and improve the efficiency of explosive energy.The measurement method of detonation propagation velocity and experimental results are presented and investigated.
文摘An expanding model of the confinement of non-ideal detonation of small charge is established on the basis of the nozzle theory.Making use of the expanding model,the analytic relationship of small charge detonation velocity and the semi-empirical relationship of detonation pressure that both change with charge diameter and confinement condition are established.The detonation velocity and pressure of small charges are calculated and experimentally verified,and the detonation velocity deviation is less than 7% while the detonation pressure deviation is less than 9%.
文摘For shaped charges,LS-DYNA software was adopted to explore the influence of number of initiation points on the penetrator formation numerically.Changed the number of initiation points from 4 to 36,the performance of penetrator under four different kinds of typical charge diameter was analyzed,and the effect of detonation wave pressure on the liner was discussed.The minimum number of initiation points to substitute for annular initiation was obtained for each of four warheads with different charge diameters,and the curve representing the relation between the number of initiation points and charge diameter was found out also by using polynomial fitting.The simulation result provides a reference for the design of multimode warhead.