期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Blast wave characteristics of multi-layer composite charge:Theoretical analysis,numerical simulation,and experimental validation 被引量:1
1
作者 Jun-bao Li Wei-bing Li +2 位作者 Xiao-wen Hong Jia-xin Yu Jian-jun Zhu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期91-102,共12页
This article investigates the characteristics of shock wave overpressure generated by multi-layer composite charge under different detonation modes.Combining dimensional analysis and the explosion mechanism of the cha... This article investigates the characteristics of shock wave overpressure generated by multi-layer composite charge under different detonation modes.Combining dimensional analysis and the explosion mechanism of the charge,a peak overpressure prediction model for the composite charge under singlepoint detonation and simultaneous detonation was established.The effects of the charge structure and initiation method on the overpressure field characteristics were investigated in AUTODYN simulation.The accuracy of the prediction model and the reliability of the numerical simulation method were subsequently verified in a series of static explosion experiments.The results reveal that the mass of the inner charge was the key factor determining the peak overpressure of the composite charge under single-point detonation.The peak overpressure in the radial direction improved apparently with an increase in the aspect ratio of the charge.The overpressure curves in the axial direction exhibited a multi-peak phenomenon,and the secondary peak overpressure even exceeded the primary peak at distances of 30D and 40D(where D is the charge diameter).The difference in peak overpressure among azimuth angles of 0-90°gradually decreased with an increase in the propagation distance of the shock wave.The coupled effect of the detonation energy of the inner and outer charge under simultaneous detonation improved the overpressure in both radial and axial directions.The difference in peak overpressure obtained from model prediction and experimental measurements was less than 16.4%. 展开更多
关键词 Blast wave characteristics Multi-layer composite charge Dimensional analysis AUTODYN mapping Model Explosion experiment
下载PDF
Propagating Characteristic of Premixed Methane-Oxygen Deflagration in the Coal Mine Lane Including a Refuge Chamber
2
作者 Huanjuan Zhao Yiran Yan +1 位作者 Yinghua Zhang Yukun Gao 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期109-117,共9页
In order to investigate detonation propagation and distribution problems of premixed CH_4 + 2O_2 mixture around a concrete structure such as a refuge chamber,detonation experiments in one small size tube were conduct... In order to investigate detonation propagation and distribution problems of premixed CH_4 + 2O_2 mixture around a concrete structure such as a refuge chamber,detonation experiments in one small size tube were conducted. A simulation method was developed to obtain the flow field load distribution in the coal mine lane and pressure load of each part for the refuge chamber. Firstly,a physical model of a full-size explosiontest lane was established,which included the refuge chamber. With the calculations of the exact initial detonation pressure,the propagation characteristics of CH_4 + 2O_2 premixed mixture detonation in the lane was simulated. Simulation results of various parts from AUTODYN are recorded,and the shock wave arrival time and the pressure peak can be observed from the detonation pressure-time curve over the changing propagation distance. So curve differences in different locations cannot be ignored. Then by detonation experiments in the small size tube,detonation pressure-time curves and velocity were obtained. Finally the simulation waveform of variation curve agreed well with the experimental results,which validated the detonation simulation method. The difference between shockwaves of the two sensors confirmed that detonation wave changed along with distance and time. These results should be taken into serious consideration for the detonation progration and distribution problem in future researches. 展开更多
关键词 mechanics of explosion detonation experiments physical model of the coal mine lane premixed methane-oxygen explosion refuge chamber
下载PDF
Evaluating the blast mitigation performance of hard/soft composite structures through field explosion experiment and numerical analysis 被引量:6
3
作者 Fengyuan Yang Zhijie Li +1 位作者 Zhuo Zhuang Zhanli Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第1期27-36,共10页
The application of hard/soft composite structure in personnel armor for blast mitigation is relatively practical and effective in realistic protection engineering,such as the shell/liner system of the helmet.However,t... The application of hard/soft composite structure in personnel armor for blast mitigation is relatively practical and effective in realistic protection engineering,such as the shell/liner system of the helmet.However,there is still lacking a reliable experi-mental methodology to effectively evaluate the blast mitigation performance when the structure directly contacts the protected target,which limits the development of protection structures.In this paper,we proposed a new method to evaluate experi-mentally and numerically the blast mitigation performance of hard/soft composite structures.The blast mitigation mechanism is analyzed.The hard/soft structures were composed of ultra-high molecular weight polyethylene(UHMWPE)composite and expanded polyethylene(EPE)foam.In field explosion experiment,a 7.0 kg trinitrotoluene(TNT)spherical charge is used to generate blast waves at a 3.8 m stand-off distance.A pressure test device is designed to support the tested structure and measure the transmitted blast pressure pulses after passing through the structure.Experimental results indicate that the hard/soft structures can mitigate the blast pressure pulse into the triangular pressure pulse,through making the pulse profile flatter,reducing the pressure amplitude,and delaying the pulse arrival time.Specifically,the combination of 7 mm UHMWPE composite and 20 mm EPE foam can reduce the blast pressure amplitude by 40%.Correspondingly,the finite element simulation is also carried out to understand the blast mitigation mechanism.The numerical results indicate that the regulation for blast pressure pulses mainly complete at the hard/soft interface,which is attributed to the reflection of pressure waves at the interface and the deformation of the soft layer compressed by the hard layer possessing kinetic energy.Furthermore,based on these analyses,the corresponding theoretical model is proposed,and it can well explain the experimental and numerical results.This study is meaningful for evaluating and designing high-performance blast mitigation structures. 展开更多
关键词 Blast mitigation Composite structure Field explosion experiment Numerical simulation
原文传递
Deflagration-to-detonation transition process for spherical aluminum dust/epoxypropane mist/air mixtures in a large-scale experimental tube 被引量:4
4
作者 LIU QingMing BAI ChunHua +2 位作者 JIANG Li DAI WenXi NIU Fang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第3期533-541,共9页
The deflagration-to-detonation transitions (DDTs) for clouds of spherical aluminum dust (SAD) mixed with air or epoxypropane mist (EPM) and air were investigated in a 29.6-m-long experimental tube of 199 mm in diamete... The deflagration-to-detonation transitions (DDTs) for clouds of spherical aluminum dust (SAD) mixed with air or epoxypropane mist (EPM) and air were investigated in a 29.6-m-long experimental tube of 199 mm in diameter. The clouds formed through the injection of SAD and SAD/liquid epoxypropane samples into the experimental tube. Explosions of the SAD/air mixture were initiated using a 7-m-long EPM/air cloud explosion ignited by a 40-J electric spark. Explosions in SAD/EPM/air clouds were initiated using a 1.2-m EPM/air cloud explosion ignited by a 40-J electric spark initiated using a 40-J electric spark. Self-sustained detonation waves formed in SAD/EPM/air mixtures instead of in SAD/air mixtures. The stages and characteristics of the DDT process in SAD/air and SAD/EPM/air mixtures were studied and analyzed. Self-sustained detonation was evident from the existence of a transverse wave and a cellular structure. Moreover, a retonation wave formed during the DDT process in SAD/EPM/air clouds. 展开更多
关键词 deflagration-to-detonation transition spherical aluminum dust epoxypropane mist multiphase explosion experimental tube
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部