期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Interfacial Characterization and Mechanical Property of Ti/Cu Clad Sheet Produced by Explosive Welding and Annealing 被引量:7
1
作者 祖国胤 LI Xiaobing +1 位作者 ZHANG Jinghua ZHANG Hao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1198-1203,共6页
It was aim to investigate the interfacial microstructure and shear performance of Ti/Cu clad sheet produced by explosive welding and annealing. The experimental results demonstrate that the alternate distribution of i... It was aim to investigate the interfacial microstructure and shear performance of Ti/Cu clad sheet produced by explosive welding and annealing. The experimental results demonstrate that the alternate distribution of interfacial collision and vortex of flyer layer forms in the interface a few of solidification structure. TEM confirms that the interfacial interlayer contains obvious lattice distortion structure and intermetallic compounds. It interprets the explosive welding as the interfacial deformation and thermal diffusion process between dissimilar metals. The interfacial shear strength is very close to the Cu matrix strength, which is determined by the mixture of the mechanical bonding and metallurgical bonding. Several cracks exist on the shear fracture owing to the intermetallic compound in the interfacial solidifi cation structure and also the probable welding inclusion. 展开更多
关键词 explosive welding interface TEM intermetallic compound fracture
下载PDF
Research on the intermediate phase of 40CrMnSiB steel shell under different heat treatments 被引量:1
2
作者 Wei-bing Li Zhi-chuang Chen +1 位作者 Xiao-ming Wang Wen-bin Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期1032-1041,共10页
In this study, 40 Cr Mn Si B steel cylindrical shells were tempered at 350, 500 and 600 ℃ to study the effect of tempering temperature on the dynamic process of expansion and fracture of the metal shell. A midexplosi... In this study, 40 Cr Mn Si B steel cylindrical shells were tempered at 350, 500 and 600 ℃ to study the effect of tempering temperature on the dynamic process of expansion and fracture of the metal shell. A midexplosion recovery experiment for the metal cylinder under internal explosive loading was designed, and the wreckage of the casings at the intermediate phase was obtained. The effects of different tempering temperatures on the macroscopic and microscopic fracture characteristics of 40 Cr Mn Si B steel were studied. The influence of tempering temperatures on the fracture characteristic parameters of the recovered wreckage were measured and analyzed, including the circumferential divide size, the thickness and the number of the circumferential divisions. The results show that as the tempering temperature was increased from 350 to 600 ℃, at first, the degree of fragmentation and the fracture characteristic parameters of the recovered wreckage changed significantly and then became essentially consistent. Scanning electron microscopy analysis revealed flow-like structure characteristics caused by adiabatic shear on different fracture surfaces. At the detonation initiation end of the casing, fracturing was formed by tearing along the crack, which existed a distance from the initiation end and propagated along the axis direction. In contrast, the fracturing near the middle position consists of a plurality of radial shear fracture units. The amount of alloy carbide that was precipitated during the tempering process increased continuously with tempering temperature, leading to an increasing number of spherical carbide particles scattered around the fracture surface. 展开更多
关键词 explosive mechanics Mid-explosion recovery experiment Explosion and fracture Heat treatment SEM(Scanning electron microscope)fracture analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部