In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip shaped charges made up of a detonating cord and explosives were measured by...In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip shaped charges made up of a detonating cord and explosives were measured by a detonation velocity measuring instrument under conditions of different ignition.The experimental results and theoretical analysis show that the maximum detonation propagation velocity depends on the explosive materials with the maximum velocity among all the explosive materials.Using detonating cord in a superposition charge can shorten detonation propagation time and improve the efficiency of explosive energy.The measurement method of detonation propagation velocity and experimental results are presented and investigated.展开更多
Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted expl...Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one展开更多
In the paper, we aim to show N-(2,4,6-trinitrophenyl)-1H-1,2,4-triazol-3-amine (HM-I) as explosive material that satisfies requirements of sensitivity and hydrolytically stability. The influence of nitro group substit...In the paper, we aim to show N-(2,4,6-trinitrophenyl)-1H-1,2,4-triazol-3-amine (HM-I) as explosive material that satisfies requirements of sensitivity and hydrolytically stability. The influence of nitro group substitutions on the thermal and chemical stability as well as the explosive performance of HM-I is also investigated. We found that nitro group substitution to the triazole ring of HM-I can significantly improve the properties of this new material. Only -NH2 substitution position (but not their number) in the core molecule is appropriate to increase the stability and improve explosive performances of HM-I.展开更多
文摘In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip shaped charges made up of a detonating cord and explosives were measured by a detonation velocity measuring instrument under conditions of different ignition.The experimental results and theoretical analysis show that the maximum detonation propagation velocity depends on the explosive materials with the maximum velocity among all the explosive materials.Using detonating cord in a superposition charge can shorten detonation propagation time and improve the efficiency of explosive energy.The measurement method of detonation propagation velocity and experimental results are presented and investigated.
文摘Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one
基金the LMA scientific project“A theoretical and experimental investigations of new potentially explosive materials using quantum mechanical methods(NSPROG-I4)”.
文摘In the paper, we aim to show N-(2,4,6-trinitrophenyl)-1H-1,2,4-triazol-3-amine (HM-I) as explosive material that satisfies requirements of sensitivity and hydrolytically stability. The influence of nitro group substitutions on the thermal and chemical stability as well as the explosive performance of HM-I is also investigated. We found that nitro group substitution to the triazole ring of HM-I can significantly improve the properties of this new material. Only -NH2 substitution position (but not their number) in the core molecule is appropriate to increase the stability and improve explosive performances of HM-I.