期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Explosion resistance performance of reinforced concrete box girder coated with polyurea:Model test and numerical simulation
1
作者 Guangpan Zhou Rong Wang +2 位作者 Mingyang Wang Jianguo Ding Yuye Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期1-18,共18页
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur... To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn. 展开更多
关键词 explosive load Explosion resistance performance Model test POLYUREA Concrete box girder Numerical simulation
下载PDF
Tuning microstructures of TC4 ELI to improve explosion resistance
2
作者 Changle Zhang Yangwei Wang +6 位作者 Lin Wang Zixuan Ning Guoju Li Dongping Chen Zhi-Wei Yan Yuchen Song Xucai Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期78-99,共22页
A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to impr... A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation. 展开更多
关键词 MICROSTRUCTURE Finite element modelling Parameter optimization Failure characteristics Explosion resistance
下载PDF
Gas pipeline explosion resistance technology 被引量:1
3
作者 Zhao ZHU Zhen-Yuan JIA Kui-Jun WANG 《Journal of Coal Science & Engineering(China)》 2013年第3期353-357,共5页
Based on the features and requirements of gas drainage system, an optimized explosion resistance technology is done after a comprehensive analysis and research about the triple IR (Infrared Ray) flame detection tech... Based on the features and requirements of gas drainage system, an optimized explosion resistance technology is done after a comprehensive analysis and research about the triple IR (Infrared Ray) flame detection technology, explosion resistance valve technology and explosion resistance control technology. An intelligent PLC (Programmable Logic Controller) resistance control system is designed which can cut offthe gas branch quickly and accurately, and the controller have automatic pressure maintaining function, valve rotation limit function, remote and local control interlock function. The reliability and rationality of explosion resistance technology is verified by gas pipeline explosion propagation and resistance simulation test. Overall response time of explosion resistance system is less than 100ms, and the spread of fire in gas pipeline can be prevented effectively. 展开更多
关键词 explosion resistance technology flame detection fast shut-off valve intelligent control
下载PDF
Synthesis and properties of novel nitro-based thermally stable energetic compounds 被引量:1
4
作者 Łukasz Gutowski Stanisław Cudziło 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期775-784,共10页
This paper reviews the achievements in the field of synthesis of new thermally resistant explosive compounds in the years 2009 through 2019. The performance characteristics of these compounds(sensitivity, thermal deco... This paper reviews the achievements in the field of synthesis of new thermally resistant explosive compounds in the years 2009 through 2019. The performance characteristics of these compounds(sensitivity, thermal decomposition parameters, and detonation parameters) were compared with those of 1,3,5-triamino-2,4,6-trinitrobenzene, which still seems to be an unrivalled model of a thermally resistant and generally low-sensitivity explosive material. New thermally stable explosives(TSEs) were found among macromolecular compounds with tri-and dinitrophenyl groups, nitro and amine-nitro derivatives of azoles, and polynitro derivatives of calixarenes. Some of them match TATB in terms of thermal resistance and additionally have higher detonation parameters. 展开更多
关键词 Heat resistant explosives Detonation parameters SYNTHESIS NITRATION
下载PDF
Effect of Raw Bauxite Addition on Thermal Behaviour of Ultra-low Cement Al_2O_3-SiO_2 Castables 被引量:1
5
作者 HOU Wanguo ZHOU Ningsheng 《China's Refractories》 CAS 2009年第3期15-17,共3页
This work investigated the thermo-gravimetric (TG) change and explosion resistance of ultra-low cement Al2O3 - SiO2 castables added with 0, 5%, 10%, 15% and 20% of 474 μm raw bauxite powders containing 72.8% Al2O3,... This work investigated the thermo-gravimetric (TG) change and explosion resistance of ultra-low cement Al2O3 - SiO2 castables added with 0, 5%, 10%, 15% and 20% of 474 μm raw bauxite powders containing 72.8% Al2O3, respectively. The castables were prepared using white fused alumina as aggregate, powders of white fused alumina, fused mullite,α-Al2O3 ultrafines, 3% CA cement and 5% microsilica as the matrix portion. TG change of the castables was investigated by a thermo-gravimetric analyzer for large size specimen. When the raw bauxite addition is less than 10%, the mass-losing behavior of the castables is similar to that without raw bauxite, tending to reach a constant mass around 400 ℃ , before which the mass-loss is mild and producing little destructive influence. With more than 10% raw bauxite addition, however, the mass-loss increases significantly, and the temperature to reach a constant mass increases to 600 ℃ or higher, unfavorable to structural stabilization. With the raw bauxite addition up to 20% , no negative influence on explosion resistance is found. 展开更多
关键词 Raw bauxite Thermo-gravimetric change Explosion resistance ULC castables Alumina silicasystem
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部