期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Numerical Simulations on the Explosive Cyclogensis over the Kuroshio Current
1
作者 许吟隆 周明煜 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1999年第1期66-70,72-78,共12页
In this paper,the Pennsylvania State University-NCAR Mesoscale Model (MM4)is used to investigate the explosive oceanic cyclone of 14-15 March 1988 over the warm Kuroshio Current. A series of numerical simulations on ... In this paper,the Pennsylvania State University-NCAR Mesoscale Model (MM4)is used to investigate the explosive oceanic cyclone of 14-15 March 1988 over the warm Kuroshio Current. A series of numerical simulations on this cyclogenesis indicates that the favorable weather conditions and strong baroclinity in the low- and middle-level are essential to its explosive development. The explosive cyclogenesis occurred over a wide range of sea surface temperatures (SST′s),which was then characterized by strong baroclinity,the low-level jet (LLJ) was initially formed under the favorable atmospheric circulation and then this LLJ advected the moisture and heat northward for the explosive development of the cyclone,the LLJ played an important role in the process of cyclogenesis.Sensitivity experiments show that the latent heating was a key factor to explosive cyclogenesis,the latent heating deepened the short-wave trough,which resulted in the rapid intensification of the cyclone; while in the explosive intensification stage and continuous development stage, there was less contribution of local surface processes for the explosion of the cyclone. 展开更多
关键词 Kuroshio Current explosive cyclogenesis Numerical simulation
下载PDF
Simulation Analysis of Indoor Gas Explosion Damage 被引量:3
2
作者 钱新明 陈林顺 冯长根 《Journal of Beijing Institute of Technology》 EI CAS 2003年第3期286-289,共4页
The influence factors and process of indoor gas explosion are studied with AutoReaGas explosion simulator. The result shows that venting pressure has great influence on the indoor gas explosion damage. The higher the ... The influence factors and process of indoor gas explosion are studied with AutoReaGas explosion simulator. The result shows that venting pressure has great influence on the indoor gas explosion damage. The higher the venting pressure is, the more serious the hazard consequence will be. The ignition location has also evident effect on the gas explosion damage. The explosion static overpressure would not cause major injury to person and serious damage to structure in the case of low venting pressure (lower than 2 kPa). The high temperature combustion after the explosion is the major factor to person injury in indoor gas explosion accidents. 展开更多
关键词 indoor gas explosion explosion simulation explosion overpressure high temperature combustion
下载PDF
Quantitative Method of the Structural Damage Identification of Gas Explosion Based on Case Study:The Shanxi “11. 23” Explosion Investigation
3
作者 Huanjuan Zhao Yiran Yan Xinming Qian 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期1-14,共14页
In order to present a retrospective analysis of exposition accidents using input data from investigation processes,data from a specific accident was examined,in which we analyzed possible involved gas species( liquef... In order to present a retrospective analysis of exposition accidents using input data from investigation processes,data from a specific accident was examined,in which we analyzed possible involved gas species( liquefied petroleum gas; nature gas) and computed their concentrations and distributions based on the interactions between the structures and the effects of the explosion. In this study,5 scenarios were created to analyze the impact effect. Moreover,a coupling algorithm was put into practice,with a practical outflow boundary and joint strength are applied. Finally,the damage effects of each scenario were simulated. Our experimental results showed significant differences in the 5 scenarios concerning the damage effects on the building structures. The results from scenario 3 agree with the accident characteristics,demonstrating the effectiveness of our proposed modeling method. Our proposed method reflects gas properties,species and the concentration and distribution,and the simulated results validates the root cause,process,and consequences of accidental explosions. Furthermore,this method describes the evolution process of explosions in different building structures. Significantly,our model demonstrates the quantatative explosion effect of factors like gas species,gas volumes,and distributions of gases on explosion results. In this study,a feasible,effective,and quantitative method for structure safety is defined,which is helpful to accelerate the development of safer site regulations. 展开更多
关键词 mechanics of explosion simulation dynamic response liquefied petroleum gas nature gas quantitative analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部