To quickly break through a reinforced concrete wall and meet the damage range requirements of rescuers entering the building,the combined damage characteristics of the reinforced concrete wall caused by EFP penetratio...To quickly break through a reinforced concrete wall and meet the damage range requirements of rescuers entering the building,the combined damage characteristics of the reinforced concrete wall caused by EFP penetration and explosion shock wave were studied.Based on LS-DYNA finite element software and RHT model with modified parameters,a 3D large-scale numerical model was established for simulation analysis,and the rationality of the material model parameters and numerical simulation algorithm were verified.On this basis,the combined damage effect of EFP penetration and explosion shock wave on reinforced concrete wall was studied,the effect of steel bars on the penetration of EFP was highlighted,and the effect of impact positions on the damage of the reinforced concrete wall was also examined.The results reveal that the designed shaped charge can form a crater with a large diameter and high depth on the reinforced concrete wall.The average crater diameter is greater than 67 cm(5.58 times of charge diameter),and crater depth is greater than 22 cm(1.83 times of charge diameter).The failure of the reinforced concrete wall is mainly caused by EFP penetration.When only EFP penetration is considered,the average diameter and depth of the crater are 54.0 cm(4.50 times of charge diameter)and 23.7 cm(1.98 times of charge diameter),respectively.The effect of explosion shock wave on crater depth is not significant,resulting in a slight increase in crater depth.The average crater depth is 24.5 cm(2.04 times of charge diameter)when the explosion shock wave is considered.The effect of explosion shock wave on the crater diameter is obvious,which can aggravate the damage range of the crater,and the effect gradually decreases with the increase of standoff distance.Compared with the results for a plain concrete wall,the crater diameter and crater depth of the reinforced concrete wall are reduced by 5.94%and 9.96%,respectively.Compared to the case in which the steel bar is not hit,when the EFP hit one steel bar and the intersection of two steel bars,the crater diameter decreases by 1.36%and 5.45%respectively,the crater depth decreases by 4.92%and 14.02%respectively.The EFP will be split by steel bar during the penetration process,resulting in an irregular trajectory.展开更多
针对同一成型装药形成多模毁伤元问题,利用LS-DYNA程序,研究了单点起爆位置对爆炸成型侵彻体(explosively formed penetrator,EFP)成型的影响规律。当起爆点距离药型罩的轴向距离从0倍装药口径增加到0.72倍装药口径,EFP速度提高了37.8%...针对同一成型装药形成多模毁伤元问题,利用LS-DYNA程序,研究了单点起爆位置对爆炸成型侵彻体(explosively formed penetrator,EFP)成型的影响规律。当起爆点距离药型罩的轴向距离从0倍装药口径增加到0.72倍装药口径,EFP速度提高了37.8%,长径比增加了1倍多;优化设计成型装药结构,分析了主装药端面中心点起爆和药型罩顶点起爆爆轰波传播规律,实现了杆式EFP、EFP 2种模态的转换。通过X光成像实验进行了验证,实验结果与数值模拟结果吻合较好。展开更多
描述了爆炸成型弹丸(explosive formed projectile,EFP)对有限厚靶板的侵彻过程,建立了计算EFP对有限厚靶板侵彻过程参数的一维分析模型。基于该模型编制了程序代码,对EFP侵彻有限厚靶板的后效参量及极限穿透速度进行了计算,并和试验结...描述了爆炸成型弹丸(explosive formed projectile,EFP)对有限厚靶板的侵彻过程,建立了计算EFP对有限厚靶板侵彻过程参数的一维分析模型。基于该模型编制了程序代码,对EFP侵彻有限厚靶板的后效参量及极限穿透速度进行了计算,并和试验结果进行了比较。证明该模型能较准确地对EFP侵彻有限厚靶板后效参量进行计算。展开更多
基金supported by the Scientific and Technological Innovation Project(Grant No.KYGYZB0019003)。
文摘To quickly break through a reinforced concrete wall and meet the damage range requirements of rescuers entering the building,the combined damage characteristics of the reinforced concrete wall caused by EFP penetration and explosion shock wave were studied.Based on LS-DYNA finite element software and RHT model with modified parameters,a 3D large-scale numerical model was established for simulation analysis,and the rationality of the material model parameters and numerical simulation algorithm were verified.On this basis,the combined damage effect of EFP penetration and explosion shock wave on reinforced concrete wall was studied,the effect of steel bars on the penetration of EFP was highlighted,and the effect of impact positions on the damage of the reinforced concrete wall was also examined.The results reveal that the designed shaped charge can form a crater with a large diameter and high depth on the reinforced concrete wall.The average crater diameter is greater than 67 cm(5.58 times of charge diameter),and crater depth is greater than 22 cm(1.83 times of charge diameter).The failure of the reinforced concrete wall is mainly caused by EFP penetration.When only EFP penetration is considered,the average diameter and depth of the crater are 54.0 cm(4.50 times of charge diameter)and 23.7 cm(1.98 times of charge diameter),respectively.The effect of explosion shock wave on crater depth is not significant,resulting in a slight increase in crater depth.The average crater depth is 24.5 cm(2.04 times of charge diameter)when the explosion shock wave is considered.The effect of explosion shock wave on the crater diameter is obvious,which can aggravate the damage range of the crater,and the effect gradually decreases with the increase of standoff distance.Compared with the results for a plain concrete wall,the crater diameter and crater depth of the reinforced concrete wall are reduced by 5.94%and 9.96%,respectively.Compared to the case in which the steel bar is not hit,when the EFP hit one steel bar and the intersection of two steel bars,the crater diameter decreases by 1.36%and 5.45%respectively,the crater depth decreases by 4.92%and 14.02%respectively.The EFP will be split by steel bar during the penetration process,resulting in an irregular trajectory.
文摘针对同一成型装药形成多模毁伤元问题,利用LS-DYNA程序,研究了单点起爆位置对爆炸成型侵彻体(explosively formed penetrator,EFP)成型的影响规律。当起爆点距离药型罩的轴向距离从0倍装药口径增加到0.72倍装药口径,EFP速度提高了37.8%,长径比增加了1倍多;优化设计成型装药结构,分析了主装药端面中心点起爆和药型罩顶点起爆爆轰波传播规律,实现了杆式EFP、EFP 2种模态的转换。通过X光成像实验进行了验证,实验结果与数值模拟结果吻合较好。
文摘描述了爆炸成型弹丸(explosive formed projectile,EFP)对有限厚靶板的侵彻过程,建立了计算EFP对有限厚靶板侵彻过程参数的一维分析模型。基于该模型编制了程序代码,对EFP侵彻有限厚靶板的后效参量及极限穿透速度进行了计算,并和试验结果进行了比较。证明该模型能较准确地对EFP侵彻有限厚靶板后效参量进行计算。