The microstructure in the electroformed copper liners of shaped charges prepared with different electrolytes was studied by Scanning Electron Microscopy (SEM) and Electron Backscattering Kikuchi Pattern (EBSP) met...The microstructure in the electroformed copper liners of shaped charges prepared with different electrolytes was studied by Scanning Electron Microscopy (SEM) and Electron Backscattering Kikuchi Pattern (EBSP) methods. SEM observations revealed the existence of columnar grains in electroformed copper liners of shaped charges formed by electrolyte without any additive and the average grain size is about 3 μm. When an additive is introduced to the electrolyte, the grains formed in the copper liners become equiaxed and finer. EBSP results show that the columnar grain grown during electroformation has the most preferential growth direction, whereas a micro-texture does not exit in the specimen prepared by electrolyte with the additive. Further, explosive detonation deformation experiments show that penetration depth is dramatically improved when the electroformed copper liners of shaped charges exhibit equiaxed grains.展开更多
Aluminum(Al) powders are used in composite explosives as a typical reducing agent for improving explosion performance. To understand energy release of aluminum in aluminized RDX-based explosives, a series of thermal...Aluminum(Al) powders are used in composite explosives as a typical reducing agent for improving explosion performance. To understand energy release of aluminum in aluminized RDX-based explosives, a series of thermal measurements and underwater explosion(UNDEX) experiments were conducted. Lithium fluoride(LiF) was added in RDX-based explosives, as a replacement of aluminum, and used in constant temperature calorimeter experiments and UNDEXs. The influence of aluminum powder on explosion heat(Qv) was measured. A rich supply of data about aluminum energy release rate was gained. There are other oxides(CO2, CO, and H2O) in detonation products besides alumina when the content of RDX is maintained at the same levels. Aluminum cannot fully combine with oxygen in the detonation products. To study the relationship between the explosive formulation and energy release, pressure and impulse signals in underwater experiments were recorded and analyzed after charges were initiated underwater. The shock wave energy(Esk), bubble energy(Eb), and total energy(Et) monotony increase with the Al/O ratio, while the growth rates of the shock wave energy,bubble energy, and total energy become slow.展开更多
In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip shaped charges made up of a detonating cord and explosives were measured by...In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip shaped charges made up of a detonating cord and explosives were measured by a detonation velocity measuring instrument under conditions of different ignition.The experimental results and theoretical analysis show that the maximum detonation propagation velocity depends on the explosive materials with the maximum velocity among all the explosive materials.Using detonating cord in a superposition charge can shorten detonation propagation time and improve the efficiency of explosive energy.The measurement method of detonation propagation velocity and experimental results are presented and investigated.展开更多
In order to investigate detonation propagation and distribution problems of premixed CH_4 + 2O_2 mixture around a concrete structure such as a refuge chamber,detonation experiments in one small size tube were conduct...In order to investigate detonation propagation and distribution problems of premixed CH_4 + 2O_2 mixture around a concrete structure such as a refuge chamber,detonation experiments in one small size tube were conducted. A simulation method was developed to obtain the flow field load distribution in the coal mine lane and pressure load of each part for the refuge chamber. Firstly,a physical model of a full-size explosiontest lane was established,which included the refuge chamber. With the calculations of the exact initial detonation pressure,the propagation characteristics of CH_4 + 2O_2 premixed mixture detonation in the lane was simulated. Simulation results of various parts from AUTODYN are recorded,and the shock wave arrival time and the pressure peak can be observed from the detonation pressure-time curve over the changing propagation distance. So curve differences in different locations cannot be ignored. Then by detonation experiments in the small size tube,detonation pressure-time curves and velocity were obtained. Finally the simulation waveform of variation curve agreed well with the experimental results,which validated the detonation simulation method. The difference between shockwaves of the two sensors confirmed that detonation wave changed along with distance and time. These results should be taken into serious consideration for the detonation progration and distribution problem in future researches.展开更多
Insensitive explosive detonation has wide applications in compressing and driving inert materials,and thereby the interaction between detonation and inert materials has received more attention.In this paper,a two-dime...Insensitive explosive detonation has wide applications in compressing and driving inert materials,and thereby the interaction between detonation and inert materials has received more attention.In this paper,a two-dimensional numerical simulation based on the Euler multiphase flow framework is used to investigate the reflection behavior of the insensitive explosive detonation propagating around a cylinder.The results show that there is a critical incident angle,defined as transition angle for detonation propagating around the cylinder,below which the regular reflection(RR)on the cylinder surface is observed.When the incident angle is greater than the transition angle,RR changes to Mach reflection.This transition angle is larger than that obtained by polar curve theory and the change of incident angle is used to interpret above phenomenon.In addition,the influence of cylindrical radius and detonation reaction zone width on the reflection behavior is examined.As the cylindrical radius increases,the height of Mach stem increases while the transition angle decreases and gradually approaches the value in pole curve theory.Von Neumann reflection is observed when the reaction zone width is relatively small.This is because the energy release rate in the reaction zone is high for small reaction zone width,resulting in the formation of a series of compression waves near the cylindrical interface.展开更多
A series of 1,3-bis(2-alkyltetrazol-5-yl)triazenes have been synthesized in high yields by treatment of sodium nitrite and hydrochloric acid with substituted-5-aminotetrazoles. All compounds were fully characterized...A series of 1,3-bis(2-alkyltetrazol-5-yl)triazenes have been synthesized in high yields by treatment of sodium nitrite and hydrochloric acid with substituted-5-aminotetrazoles. All compounds were fully characterized using IR spectroscopy,~1H NMR and^(13) C NMR spectroscopy and high resolution mass spectrometer(HRMS). Most of these triazenes exhibit good detonation performance comparable with TNT and low melting points ranging from 81°C to 106°C, which are suitable for melt-cast explosives.Among these compounds, 1,3-bis(2-azidoethyltetrazol-5-yl)triazene(2g) displays a low melting point(106°C), moderate onset decomposition temperature(183°C) and good detonation performance(D:7087 m/s; P: 17.6 GPa).展开更多
基金financially supported by the National Natural Science Foundation of China (No.59971008)
文摘The microstructure in the electroformed copper liners of shaped charges prepared with different electrolytes was studied by Scanning Electron Microscopy (SEM) and Electron Backscattering Kikuchi Pattern (EBSP) methods. SEM observations revealed the existence of columnar grains in electroformed copper liners of shaped charges formed by electrolyte without any additive and the average grain size is about 3 μm. When an additive is introduced to the electrolyte, the grains formed in the copper liners become equiaxed and finer. EBSP results show that the columnar grain grown during electroformation has the most preferential growth direction, whereas a micro-texture does not exit in the specimen prepared by electrolyte with the additive. Further, explosive detonation deformation experiments show that penetration depth is dramatically improved when the electroformed copper liners of shaped charges exhibit equiaxed grains.
文摘Aluminum(Al) powders are used in composite explosives as a typical reducing agent for improving explosion performance. To understand energy release of aluminum in aluminized RDX-based explosives, a series of thermal measurements and underwater explosion(UNDEX) experiments were conducted. Lithium fluoride(LiF) was added in RDX-based explosives, as a replacement of aluminum, and used in constant temperature calorimeter experiments and UNDEXs. The influence of aluminum powder on explosion heat(Qv) was measured. A rich supply of data about aluminum energy release rate was gained. There are other oxides(CO2, CO, and H2O) in detonation products besides alumina when the content of RDX is maintained at the same levels. Aluminum cannot fully combine with oxygen in the detonation products. To study the relationship between the explosive formulation and energy release, pressure and impulse signals in underwater experiments were recorded and analyzed after charges were initiated underwater. The shock wave energy(Esk), bubble energy(Eb), and total energy(Et) monotony increase with the Al/O ratio, while the growth rates of the shock wave energy,bubble energy, and total energy become slow.
文摘In order to investigate detonation propagation characteristics of different charge patterns,the detonation velocities of superposition strip shaped charges made up of a detonating cord and explosives were measured by a detonation velocity measuring instrument under conditions of different ignition.The experimental results and theoretical analysis show that the maximum detonation propagation velocity depends on the explosive materials with the maximum velocity among all the explosive materials.Using detonating cord in a superposition charge can shorten detonation propagation time and improve the efficiency of explosive energy.The measurement method of detonation propagation velocity and experimental results are presented and investigated.
基金Supported by the National Science Foundation of China(E041003)the Fundamental Research Funds for the Central Universities(FRF-TP-15-105 A1)the Postdoctoral Science Foundation of China(2015M580049)
文摘In order to investigate detonation propagation and distribution problems of premixed CH_4 + 2O_2 mixture around a concrete structure such as a refuge chamber,detonation experiments in one small size tube were conducted. A simulation method was developed to obtain the flow field load distribution in the coal mine lane and pressure load of each part for the refuge chamber. Firstly,a physical model of a full-size explosiontest lane was established,which included the refuge chamber. With the calculations of the exact initial detonation pressure,the propagation characteristics of CH_4 + 2O_2 premixed mixture detonation in the lane was simulated. Simulation results of various parts from AUTODYN are recorded,and the shock wave arrival time and the pressure peak can be observed from the detonation pressure-time curve over the changing propagation distance. So curve differences in different locations cannot be ignored. Then by detonation experiments in the small size tube,detonation pressure-time curves and velocity were obtained. Finally the simulation waveform of variation curve agreed well with the experimental results,which validated the detonation simulation method. The difference between shockwaves of the two sensors confirmed that detonation wave changed along with distance and time. These results should be taken into serious consideration for the detonation progration and distribution problem in future researches.
文摘Insensitive explosive detonation has wide applications in compressing and driving inert materials,and thereby the interaction between detonation and inert materials has received more attention.In this paper,a two-dimensional numerical simulation based on the Euler multiphase flow framework is used to investigate the reflection behavior of the insensitive explosive detonation propagating around a cylinder.The results show that there is a critical incident angle,defined as transition angle for detonation propagating around the cylinder,below which the regular reflection(RR)on the cylinder surface is observed.When the incident angle is greater than the transition angle,RR changes to Mach reflection.This transition angle is larger than that obtained by polar curve theory and the change of incident angle is used to interpret above phenomenon.In addition,the influence of cylindrical radius and detonation reaction zone width on the reflection behavior is examined.As the cylindrical radius increases,the height of Mach stem increases while the transition angle decreases and gradually approaches the value in pole curve theory.Von Neumann reflection is observed when the reaction zone width is relatively small.This is because the energy release rate in the reaction zone is high for small reaction zone width,resulting in the formation of a series of compression waves near the cylindrical interface.
基金Financial support of this work from the National Natural Science Foundation of China(No.21372027)
文摘A series of 1,3-bis(2-alkyltetrazol-5-yl)triazenes have been synthesized in high yields by treatment of sodium nitrite and hydrochloric acid with substituted-5-aminotetrazoles. All compounds were fully characterized using IR spectroscopy,~1H NMR and^(13) C NMR spectroscopy and high resolution mass spectrometer(HRMS). Most of these triazenes exhibit good detonation performance comparable with TNT and low melting points ranging from 81°C to 106°C, which are suitable for melt-cast explosives.Among these compounds, 1,3-bis(2-azidoethyltetrazol-5-yl)triazene(2g) displays a low melting point(106°C), moderate onset decomposition temperature(183°C) and good detonation performance(D:7087 m/s; P: 17.6 GPa).