Let x∈(0,1)be a real number with continued fraction expansion[a_(1)(x),a_(2)(x),a_(3)(x),⋯].This paper is concerned with the multifractal spectrum of the convergence exponent of{a_(n)(x)}_(n≥1) defined by τ(x):=in...Let x∈(0,1)be a real number with continued fraction expansion[a_(1)(x),a_(2)(x),a_(3)(x),⋯].This paper is concerned with the multifractal spectrum of the convergence exponent of{a_(n)(x)}_(n≥1) defined by τ(x):=inf{s≥0:∑n≥1an^(-s)(x)<∞}.展开更多
该文主要通过学习了Laine的经典著作《Nevanlinna Theory and Complex Differential Equations》中关于系数A(z)是周期2πi的二阶复微分方程f"(z)+A(z)f(z)=0,λ(f)<∞的相关章节内容,发现了原来文献证明中存在的一个本质错误...该文主要通过学习了Laine的经典著作《Nevanlinna Theory and Complex Differential Equations》中关于系数A(z)是周期2πi的二阶复微分方程f"(z)+A(z)f(z)=0,λ(f)<∞的相关章节内容,发现了原来文献证明中存在的一个本质错误并给予了部分证明更正,同时也给出了一些较原文献中证明错误的结果的稍弱更正结论.展开更多
基金This research was supported by National Natural Science Foundation of China(11771153,11801591,11971195,12171107)Guangdong Natural Science Foundation(2018B0303110005)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2021A1515010056)Kunkun Song would like to thank China Scholarship Council(CSC)for financial support(201806270091).
文摘Let x∈(0,1)be a real number with continued fraction expansion[a_(1)(x),a_(2)(x),a_(3)(x),⋯].This paper is concerned with the multifractal spectrum of the convergence exponent of{a_(n)(x)}_(n≥1) defined by τ(x):=inf{s≥0:∑n≥1an^(-s)(x)<∞}.
文摘该文主要通过学习了Laine的经典著作《Nevanlinna Theory and Complex Differential Equations》中关于系数A(z)是周期2πi的二阶复微分方程f"(z)+A(z)f(z)=0,λ(f)<∞的相关章节内容,发现了原来文献证明中存在的一个本质错误并给予了部分证明更正,同时也给出了一些较原文献中证明错误的结果的稍弱更正结论.