A class of stochastic Besov spaces BpL^(2)(Ω;˙H^(α)(O)),1≤p≤∞andα∈[−2,2],is introduced to characterize the regularity of the noise in the semilinear stochastic heat equation du−Δudt=f(u)dt+dW(t),under the fol...A class of stochastic Besov spaces BpL^(2)(Ω;˙H^(α)(O)),1≤p≤∞andα∈[−2,2],is introduced to characterize the regularity of the noise in the semilinear stochastic heat equation du−Δudt=f(u)dt+dW(t),under the following conditions for someα∈(0,1]:||∫_(0)^(t)e−(t−s)^(A)dW(s)||L^(2)(Ω;L^(2)(O))≤C^(t^(α/2))and||∫_(0)^(t)e−(t−s)^(A)dW(s)||_B^(∞)L^(2)(Ω:H^(α)(O))≤C..The conditions above are shown to be satisfied by both trace-class noises(withα=1)and one-dimensional space-time white noises(withα=1/2).The latter would fail to satisfy the conditions withα=1/2 if the stochastic Besov norm||·||B∞L^(2)(Ω;˙H^(α)(O))is replaced by the classical Sobolev norm||·||L^(2)(Ω;˙Hα(O)),and this often causes reduction of the convergence order in the numerical analysis of the semilinear stochastic heat equation.In this paper,the convergence of a modified exponential Euler method,with a spectral method for spatial discretization,is proved to have orderαin both the time and space for possibly nonsmooth initial data in L^(4)(Ω;˙H^(β)(O))withβ>−1,by utilizing the real interpolation properties of the stochastic Besov spaces and a class of locally refined stepsizes to resolve the singularity of the solution at t=0.展开更多
In this paper,the numerical methods for semi-linear stochastic delay integro-difFerential equations are studied.The uniqueness,existence and stability of analytic solutions of semi-linear stochastic delay integro-diff...In this paper,the numerical methods for semi-linear stochastic delay integro-difFerential equations are studied.The uniqueness,existence and stability of analytic solutions of semi-linear stochastic delay integro-differential equations are studied and some suitable conditions for the mean-square stability of the analytic solutions are also obtained.Then the numerical approximation of exponential Euler method for semi-linear stochastic delay integro-differential equations is constructed and the convergence and the stability of the numerical method are studied.It is proved that the exponential Euler method is convergent with strong order 1/2 and can keep the mean-square exponential stability of the analytical solutions under some restrictions on the step size.In addition,numerical experiments are presented to confirm the theoretical results.展开更多
This paper aims to analyze the weak approximation error of a fully discrete scheme for a class of semi-linear parabolic stochastic partial differential equations(SPDEs)driven by additive fractional Brownian motions wi...This paper aims to analyze the weak approximation error of a fully discrete scheme for a class of semi-linear parabolic stochastic partial differential equations(SPDEs)driven by additive fractional Brownian motions with the Hurst parameter H∈(1/2,1).The spatial approximation is performed by a spectral Galerkin method and the temporal discretization by an exponential Euler method.As far as we know,the weak error analysis for approximations of fractional noise driven SPDEs is absent in the literature.A key difficulty in the analysis is caused by the lack of the associated Kolmogorov equations.In the present work,a novel and efficient approach is presented to carry out the weak error analysis for the approximations,which does not rely on the associated Kolmogorov equations but relies on the Malliavin calculus.To the best of our knowledge,the rates of weak convergence,shown to be higher than the strong convergence rates,are revealed in the fractional noise driven SPDE setting for the first time.Numerical examples corroborate the claimed weak orders of convergence.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.12071020,12131005 and U2230402)the Research Grants Council of Hong Kong(Grant No.Poly U15300519)an Internal Grant of The Hong Kong Polytechnic University(Grant No.P0038843,Work Programme:ZVX7)。
文摘A class of stochastic Besov spaces BpL^(2)(Ω;˙H^(α)(O)),1≤p≤∞andα∈[−2,2],is introduced to characterize the regularity of the noise in the semilinear stochastic heat equation du−Δudt=f(u)dt+dW(t),under the following conditions for someα∈(0,1]:||∫_(0)^(t)e−(t−s)^(A)dW(s)||L^(2)(Ω;L^(2)(O))≤C^(t^(α/2))and||∫_(0)^(t)e−(t−s)^(A)dW(s)||_B^(∞)L^(2)(Ω:H^(α)(O))≤C..The conditions above are shown to be satisfied by both trace-class noises(withα=1)and one-dimensional space-time white noises(withα=1/2).The latter would fail to satisfy the conditions withα=1/2 if the stochastic Besov norm||·||B∞L^(2)(Ω;˙H^(α)(O))is replaced by the classical Sobolev norm||·||L^(2)(Ω;˙Hα(O)),and this often causes reduction of the convergence order in the numerical analysis of the semilinear stochastic heat equation.In this paper,the convergence of a modified exponential Euler method,with a spectral method for spatial discretization,is proved to have orderαin both the time and space for possibly nonsmooth initial data in L^(4)(Ω;˙H^(β)(O))withβ>−1,by utilizing the real interpolation properties of the stochastic Besov spaces and a class of locally refined stepsizes to resolve the singularity of the solution at t=0.
基金This research is supported by National Natural Science Foundation of China(Project No.11901173)by the Heilongjiang province Natural Science Foundation(LH2019A030)by the Heilongjiang province Innovation Talent Foundation(2018CX17).
文摘In this paper,the numerical methods for semi-linear stochastic delay integro-difFerential equations are studied.The uniqueness,existence and stability of analytic solutions of semi-linear stochastic delay integro-differential equations are studied and some suitable conditions for the mean-square stability of the analytic solutions are also obtained.Then the numerical approximation of exponential Euler method for semi-linear stochastic delay integro-differential equations is constructed and the convergence and the stability of the numerical method are studied.It is proved that the exponential Euler method is convergent with strong order 1/2 and can keep the mean-square exponential stability of the analytical solutions under some restrictions on the step size.In addition,numerical experiments are presented to confirm the theoretical results.
基金supported by NSF of China(Grant Nos.11971488,12071488)by NSF of Hunan Province(Grant No.2020JJ2040)by the Fundamental Research Funds for the Central Universities of Central South University(Grant Nos.2017zzts318,2019zzts214).
文摘This paper aims to analyze the weak approximation error of a fully discrete scheme for a class of semi-linear parabolic stochastic partial differential equations(SPDEs)driven by additive fractional Brownian motions with the Hurst parameter H∈(1/2,1).The spatial approximation is performed by a spectral Galerkin method and the temporal discretization by an exponential Euler method.As far as we know,the weak error analysis for approximations of fractional noise driven SPDEs is absent in the literature.A key difficulty in the analysis is caused by the lack of the associated Kolmogorov equations.In the present work,a novel and efficient approach is presented to carry out the weak error analysis for the approximations,which does not rely on the associated Kolmogorov equations but relies on the Malliavin calculus.To the best of our knowledge,the rates of weak convergence,shown to be higher than the strong convergence rates,are revealed in the fractional noise driven SPDE setting for the first time.Numerical examples corroborate the claimed weak orders of convergence.