The Bayes estimator of the parameter is obtained for the scale exponential family in the case of identically distributed and positively associated(PA) samples under weighted square loss function.We construct the emp...The Bayes estimator of the parameter is obtained for the scale exponential family in the case of identically distributed and positively associated(PA) samples under weighted square loss function.We construct the empirical Bayes(EB) estimator and prove it is asymptotic optimal.展开更多
This paper studies scale-type stability for neural networks with unbounded time-varying delays and Lipschitz continuous activation functions. Several sufficient conditions for the global exponential stability and glob...This paper studies scale-type stability for neural networks with unbounded time-varying delays and Lipschitz continuous activation functions. Several sufficient conditions for the global exponential stability and global asymptotic stability of such neural networks on time scales are derived. The new results can extend the existing relevant stability results in the previous literatures to cover some general neural networks.展开更多
基金Supported by the Anhui University of Technology and Science Foundation for the Recruiting Talent(2009YQ005) Acknowledgements The authors thank the referee for his/her careful reading of the manuscript and many useful suggestions.
文摘The Bayes estimator of the parameter is obtained for the scale exponential family in the case of identically distributed and positively associated(PA) samples under weighted square loss function.We construct the empirical Bayes(EB) estimator and prove it is asymptotic optimal.
基金supported by National Natural Science Foundation of China under Grant 61573005 and 11361010the Foundation for Young Professors of Jimei Universitythe Foundation of Fujian Higher Education(JA11154,JA11144)
文摘This paper studies scale-type stability for neural networks with unbounded time-varying delays and Lipschitz continuous activation functions. Several sufficient conditions for the global exponential stability and global asymptotic stability of such neural networks on time scales are derived. The new results can extend the existing relevant stability results in the previous literatures to cover some general neural networks.