In this paper, we obtain a necessary and sufficient condition for the incompleteness of complex exponential system in Cα, where Cα is a weighted Banach space of complex continuous functions f on the real axis R with...In this paper, we obtain a necessary and sufficient condition for the incompleteness of complex exponential system in Cα, where Cα is a weighted Banach space of complex continuous functions f on the real axis R with f(t) exp{-α(t)} vanishing at infinity, in the uniform norm.展开更多
In this work,we propose a low-regularity Fourier integrator with almost mass conservation to solve the Davey-StewartsonⅡsystem(hyperbolic-elliptic case).Arbitrary order mass convergence could be achieved by the suita...In this work,we propose a low-regularity Fourier integrator with almost mass conservation to solve the Davey-StewartsonⅡsystem(hyperbolic-elliptic case).Arbitrary order mass convergence could be achieved by the suitable addition of correction terms,while keeping the first order accuracy in H~γ×H^(γ+1)for initial data in H^(γ+1)×H^(γ+1)withγ>1.The main theorem is that,up to some fixed time T,there exist constantsτ_(0)and C depending only on T and‖u‖_(L^(∞)((0,T);H^(γ+1)))such that,for any 0<τ≤τ_(0),we have that‖u(t_(n),·)-u^(n)‖H_γ≤C_(τ),‖v(t_(n),·)-v^(n)‖_(Hγ+1)≤C_(τ),where u^(n)and v^(n)denote the numerical solutions at t_(n)=nτ.Moreover,the mass of the numerical solution M(u^(n))satisfies that|M(u^(n))-M(u_0)|≤Cτ~5.展开更多
We provide a concise review of the exponentially convergent multiscale finite element method(ExpMsFEM)for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave pr...We provide a concise review of the exponentially convergent multiscale finite element method(ExpMsFEM)for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave propagation.The ExpMsFEM is built on the non-overlapped domain decomposition in the classical MsFEM while enriching the approximation space systematically to achieve a nearly exponential convergence rate regarding the number of basis functions.Unlike most generalizations of the MsFEM in the literature,the ExpMsFEM does not rely on any partition of unity functions.In general,it is necessary to use function representations dependent on the right-hand side to break the algebraic Kolmogorov n-width barrier to achieve exponential convergence.Indeed,there are online and offline parts in the function representation provided by the ExpMsFEM.The online part depends on the right-hand side locally and can be computed in parallel efficiently.The offline part contains basis functions that are used in the Galerkin method to assemble the stiffness matrix;they are all independent of the right-hand side,so the stiffness matrix can be used repeatedly in multi-query scenarios.展开更多
The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global expo...The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global exponential stability in the case of discrete-time positive homogeneous systems with an order less than one with time-varying delays.展开更多
The exponential Randić index has important applications in the fields of biology and chemistry. The exponential Randić index of a graph G is defined as the sum of the weights e 1 d( u )d( v ) of all edges uv of G, whe...The exponential Randić index has important applications in the fields of biology and chemistry. The exponential Randić index of a graph G is defined as the sum of the weights e 1 d( u )d( v ) of all edges uv of G, where d( u ) denotes the degree of a vertex u in G. The paper mainly provides the upper and lower bounds of the exponential Randić index in quasi-tree graphs, and characterizes the extremal graphs when the bounds are achieved.展开更多
A necessary and sufficient condition is obtained for the complex exponential system to be dense in the weighted Banach space L_α~p={f:f_(-∞)~∞|f(t)e^(-α)(t)|~Pdt<∞},where 1(?)p<+∞andα(t)is a nonnegative c...A necessary and sufficient condition is obtained for the complex exponential system to be dense in the weighted Banach space L_α~p={f:f_(-∞)~∞|f(t)e^(-α)(t)|~Pdt<∞},where 1(?)p<+∞andα(t)is a nonnegative continuous function on R.展开更多
In this paper,closure of the linear span on complex exponential system in weighted Banach space Lαp is studied.Each function in the closure of complex exponential system can be extended to an entire function represen...In this paper,closure of the linear span on complex exponential system in weighted Banach space Lαp is studied.Each function in the closure of complex exponential system can be extended to an entire function represented by Taylor-Dirichlet series.展开更多
A necessary and sufficient condition is obtained for the incompleteness of complex exponential system in the weighted Banach space Lαp = {f:∫+∞∞ |f(t)e-α(t)|pdt +∞},where 1 ≤ p +∞ and α(t) is a we...A necessary and sufficient condition is obtained for the incompleteness of complex exponential system in the weighted Banach space Lαp = {f:∫+∞∞ |f(t)e-α(t)|pdt +∞},where 1 ≤ p +∞ and α(t) is a weight on R.展开更多
Necessary and sufficient conditions are obtained for the incompleteness and the minimality of the exponential system E(Λ,M) = {z l e λ n z : l = 0,1,...,m n-1;n = 1,2,...} in the Banach space E 2 [σ] consisting ...Necessary and sufficient conditions are obtained for the incompleteness and the minimality of the exponential system E(Λ,M) = {z l e λ n z : l = 0,1,...,m n-1;n = 1,2,...} in the Banach space E 2 [σ] consisting of some analytic functions in a half strip.If the incompleteness holds,each function in the closure of the linear span of exponential system E(Λ,M) can be extended to an analytic function represented by a Taylor-Dirichlet series.Moreover,by the conformal mapping ζ = φ(z) = e z ,the similar results hold for the incompleteness and the minimality of the power function system F (Λ,M) = {(log ζ) l ζ λ n : l = 0,1,...,m n-1;n = 1,2,...} in the Banach space F 2 [σ] consisting of some analytic functions in a sector.展开更多
A sufficient condition is obtained for the minimality of the complex exponential system E(A, M) = {z^le^λnz: l = 0, 1,,.., mn - 1; n = 1, 2,...} in the Banaeh space La^p consisting of all functions f such that f^...A sufficient condition is obtained for the minimality of the complex exponential system E(A, M) = {z^le^λnz: l = 0, 1,,.., mn - 1; n = 1, 2,...} in the Banaeh space La^p consisting of all functions f such that f^-a ∈ LP(N). Moreover, if the incompleteness holds, each function in the closure of the linear span of exponential system E(A, M) can be extended to an analytic function represented by a Taylor-Dirichlet series.展开更多
A necessary and sufficient condition is obtained for the incompleteness of a complex exponential system E(A, M) in Cα, where Cα is the weighted Banach space consisting of all complex continuous functions f on the re...A necessary and sufficient condition is obtained for the incompleteness of a complex exponential system E(A, M) in Cα, where Cα is the weighted Banach space consisting of all complex continuous functions f on the real axis R with f(t)exp(-α(t)) vanishing at infinity, in the uniform norm ‖f‖α = sup{|f(t)e-α(t)|: t ∈ R} with respect to the weight α(t). If the incompleteness holds, then the complex exponential system E(∧, M) is minimal and each function in the closure of the linear span of complex exponential system E(∧, M) can be extended to an entire function represented by a Taylor-Dirichlet series.展开更多
This paper proposes a new robust chaotic system of three-dimensional quadratic autonomous ordinary differential equations by introducing an exponential quadratic term. This system can display a double-scroll chaotic a...This paper proposes a new robust chaotic system of three-dimensional quadratic autonomous ordinary differential equations by introducing an exponential quadratic term. This system can display a double-scroll chaotic attractor with only two equilibria, and can be found to be robust chaotic in a very wide parameter domain with positive maximum Lyapunov exponent. Some basic dynamical properties and chaotic behaviour of novel attractor are studied. By numerical simulation, this paper verifies that the three-dimensional system can also evolve into periodic and chaotic behaviours by a constant controller.展开更多
The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the ...The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generaliz...Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generalized higher order algebraic differential equations with exponential coefficients and obtain some results.展开更多
Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear ...Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.展开更多
The reliability assessment of unit-system near two levels is the mostimportant content in the reliability multi-level synthesis of complex systems. Introducing theinformation theory into system reliability assessment,...The reliability assessment of unit-system near two levels is the mostimportant content in the reliability multi-level synthesis of complex systems. Introducing theinformation theory into system reliability assessment, using the addible characteristic ofinformation quantity and the principle of equivalence of information quantity, an entropy method ofdata information conversion is presented for the system consisted of identical exponential units.The basic conversion formulae of entropy method of unit test data are derived based on the principleof information quantity equivalence. The general models of entropy method synthesis assessment forsystem reliability approximate lower limits are established according to the fundamental principleof the unit reliability assessment. The applications of the entropy method are discussed by way ofpractical examples. Compared with the traditional methods, the entropy method is found to be validand practicable and the assessment results are very satisfactory.展开更多
This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in ...This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching.All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.展开更多
This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is consid...This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is considered in order to reduce the error between theory and application, a sufficient condition for exponential stabilization of networked control systems under a given switching rule is presented by multiple Lyapunov-like functions. These results are presented for both continuous-time and discrete-time domains. Controllers are designed by means of linear matrix inequalities. Sim- ulation results show the feasibility and efficiency of the proposed method.展开更多
A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censore...A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censored test,and figures out the approach to determine the prior distribution of the system failure rate by applying the reliability growth model to incorporate the multistage test data collected from system development.Furthermore,the procedure for the Bayesian sequential testing is derived for the failure rate of the exponential life system,which enables the decision to terminate or continue development test.Finally,a numerical example is given to illustrate the efficiency of the proposed model and procedure.展开更多
By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequ...By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.展开更多
基金The NSFC (Grant No. 10371005 and 10071005} and SRF for ROCS. SEM.
文摘In this paper, we obtain a necessary and sufficient condition for the incompleteness of complex exponential system in Cα, where Cα is a weighted Banach space of complex continuous functions f on the real axis R with f(t) exp{-α(t)} vanishing at infinity, in the uniform norm.
基金supported by the NSFC(11901120)supported by the NSFC(12171356)the Science and Technology Program of Guangzhou,China(2024A04J4027)。
文摘In this work,we propose a low-regularity Fourier integrator with almost mass conservation to solve the Davey-StewartsonⅡsystem(hyperbolic-elliptic case).Arbitrary order mass convergence could be achieved by the suitable addition of correction terms,while keeping the first order accuracy in H~γ×H^(γ+1)for initial data in H^(γ+1)×H^(γ+1)withγ>1.The main theorem is that,up to some fixed time T,there exist constantsτ_(0)and C depending only on T and‖u‖_(L^(∞)((0,T);H^(γ+1)))such that,for any 0<τ≤τ_(0),we have that‖u(t_(n),·)-u^(n)‖H_γ≤C_(τ),‖v(t_(n),·)-v^(n)‖_(Hγ+1)≤C_(τ),where u^(n)and v^(n)denote the numerical solutions at t_(n)=nτ.Moreover,the mass of the numerical solution M(u^(n))satisfies that|M(u^(n))-M(u_0)|≤Cτ~5.
基金part supported by the NSF Grants DMS-1912654 and DMS 2205590。
文摘We provide a concise review of the exponentially convergent multiscale finite element method(ExpMsFEM)for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave propagation.The ExpMsFEM is built on the non-overlapped domain decomposition in the classical MsFEM while enriching the approximation space systematically to achieve a nearly exponential convergence rate regarding the number of basis functions.Unlike most generalizations of the MsFEM in the literature,the ExpMsFEM does not rely on any partition of unity functions.In general,it is necessary to use function representations dependent on the right-hand side to break the algebraic Kolmogorov n-width barrier to achieve exponential convergence.Indeed,there are online and offline parts in the function representation provided by the ExpMsFEM.The online part depends on the right-hand side locally and can be computed in parallel efficiently.The offline part contains basis functions that are used in the Galerkin method to assemble the stiffness matrix;they are all independent of the right-hand side,so the stiffness matrix can be used repeatedly in multi-query scenarios.
文摘The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global exponential stability in the case of discrete-time positive homogeneous systems with an order less than one with time-varying delays.
文摘The exponential Randić index has important applications in the fields of biology and chemistry. The exponential Randić index of a graph G is defined as the sum of the weights e 1 d( u )d( v ) of all edges uv of G, where d( u ) denotes the degree of a vertex u in G. The paper mainly provides the upper and lower bounds of the exponential Randić index in quasi-tree graphs, and characterizes the extremal graphs when the bounds are achieved.
基金the National Natural Science Foundation of China(No.10671022)the Research Fund for the Doctoral Program of Higher Education(No.20060027023).
文摘A necessary and sufficient condition is obtained for the complex exponential system to be dense in the weighted Banach space L_α~p={f:f_(-∞)~∞|f(t)e^(-α)(t)|~Pdt<∞},where 1(?)p<+∞andα(t)is a nonnegative continuous function on R.
基金Supported by the Applied Fundamental Research Project of Yunnan Province (Grant No.2007A229M)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20060027023)
文摘In this paper,closure of the linear span on complex exponential system in weighted Banach space Lαp is studied.Each function in the closure of complex exponential system can be extended to an entire function represented by Taylor-Dirichlet series.
基金Supported by the National Natural Science Foundation of China (Grant No.10671022)the Research Fundfor the Doctoral of Higher Education (Grant No.20060027023)
文摘A necessary and sufficient condition is obtained for the incompleteness of complex exponential system in the weighted Banach space Lαp = {f:∫+∞∞ |f(t)e-α(t)|pdt +∞},where 1 ≤ p +∞ and α(t) is a weight on R.
基金Supported by the National Natural Science Foundation of China (Grant No. 11071020)the Research Foundation for Doctor Program (Grant No. 20100003110004)
文摘Necessary and sufficient conditions are obtained for the incompleteness and the minimality of the exponential system E(Λ,M) = {z l e λ n z : l = 0,1,...,m n-1;n = 1,2,...} in the Banach space E 2 [σ] consisting of some analytic functions in a half strip.If the incompleteness holds,each function in the closure of the linear span of exponential system E(Λ,M) can be extended to an analytic function represented by a Taylor-Dirichlet series.Moreover,by the conformal mapping ζ = φ(z) = e z ,the similar results hold for the incompleteness and the minimality of the power function system F (Λ,M) = {(log ζ) l ζ λ n : l = 0,1,...,m n-1;n = 1,2,...} in the Banach space F 2 [σ] consisting of some analytic functions in a sector.
基金Supported by the National Natural Science Foundation of China (Grant No.10671022)the Research Foundation for Doctor Programme (Grant No.20060027023)
文摘A sufficient condition is obtained for the minimality of the complex exponential system E(A, M) = {z^le^λnz: l = 0, 1,,.., mn - 1; n = 1, 2,...} in the Banaeh space La^p consisting of all functions f such that f^-a ∈ LP(N). Moreover, if the incompleteness holds, each function in the closure of the linear span of exponential system E(A, M) can be extended to an analytic function represented by a Taylor-Dirichlet series.
基金This work was partially supported by the Research Foundation for Doctor Programme(Grant No.20060027023)the National Natural Science Foundation of China(Grant No.10671022)
文摘A necessary and sufficient condition is obtained for the incompleteness of a complex exponential system E(A, M) in Cα, where Cα is the weighted Banach space consisting of all complex continuous functions f on the real axis R with f(t)exp(-α(t)) vanishing at infinity, in the uniform norm ‖f‖α = sup{|f(t)e-α(t)|: t ∈ R} with respect to the weight α(t). If the incompleteness holds, then the complex exponential system E(∧, M) is minimal and each function in the closure of the linear span of complex exponential system E(∧, M) can be extended to an entire function represented by a Taylor-Dirichlet series.
文摘This paper proposes a new robust chaotic system of three-dimensional quadratic autonomous ordinary differential equations by introducing an exponential quadratic term. This system can display a double-scroll chaotic attractor with only two equilibria, and can be found to be robust chaotic in a very wide parameter domain with positive maximum Lyapunov exponent. Some basic dynamical properties and chaotic behaviour of novel attractor are studied. By numerical simulation, this paper verifies that the three-dimensional system can also evolve into periodic and chaotic behaviours by a constant controller.
基金The National Natural Science Foundation of China(No.61273119,61104068,61374038)the Natural Science Foundation of Jiangsu Province(No.BK2011253)
文摘The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.
基金Project Supported by the Natural Science Foundation of China (10471065)the Natural Science Foundation of Guangdong Province (04010474)
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generalized higher order algebraic differential equations with exponential coefficients and obtain some results.
基金supported by the National Natural Science Foundation of China(No.10632040)
文摘Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.
文摘The reliability assessment of unit-system near two levels is the mostimportant content in the reliability multi-level synthesis of complex systems. Introducing theinformation theory into system reliability assessment, using the addible characteristic ofinformation quantity and the principle of equivalence of information quantity, an entropy method ofdata information conversion is presented for the system consisted of identical exponential units.The basic conversion formulae of entropy method of unit test data are derived based on the principleof information quantity equivalence. The general models of entropy method synthesis assessment forsystem reliability approximate lower limits are established according to the fundamental principleof the unit reliability assessment. The applications of the entropy method are discussed by way ofpractical examples. Compared with the traditional methods, the entropy method is found to be validand practicable and the assessment results are very satisfactory.
基金supported by the National Natural Science Foundation of China(61673198)the Provincial Natural Science Foundation of Liaoning Province(20180550473)
文摘This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching.All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.
基金This work was supported by the National Natural Science Foundation of China (No.60574013, 60274009), and the Natural Science Fundation ofLiaoning Province (No.20032020).
文摘This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is considered in order to reduce the error between theory and application, a sufficient condition for exponential stabilization of networked control systems under a given switching rule is presented by multiple Lyapunov-like functions. These results are presented for both continuous-time and discrete-time domains. Controllers are designed by means of linear matrix inequalities. Sim- ulation results show the feasibility and efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China (70571083)the Research Fund for the Doctoral Program of Higher Education of China (20094307110013)
文摘A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censored test,and figures out the approach to determine the prior distribution of the system failure rate by applying the reliability growth model to incorporate the multistage test data collected from system development.Furthermore,the procedure for the Bayesian sequential testing is derived for the failure rate of the exponential life system,which enables the decision to terminate or continue development test.Finally,a numerical example is given to illustrate the efficiency of the proposed model and procedure.
文摘By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.