In this paper explicit expressions and some recurrence relations are derived for marginal and joint moment generating functions of generalized order statistics from Erlang-truncated exponential distribution. The resul...In this paper explicit expressions and some recurrence relations are derived for marginal and joint moment generating functions of generalized order statistics from Erlang-truncated exponential distribution. The results for k-th record values and order statistics are deduced from the relations derived. Further, a characterizing result of this distribution on using the conditional expectation of function of generalized order statistics is discussed.展开更多
The present article mainly focuses on the fractional derivatives with an exponential kernel(“exponential fractional derivatives”for brevity).First,several extended integral transforms of the exponential fractional d...The present article mainly focuses on the fractional derivatives with an exponential kernel(“exponential fractional derivatives”for brevity).First,several extended integral transforms of the exponential fractional derivatives are proposed,including the Fourier transform and the Laplace transform.Then,the L2 discretisation for the exponential Caputo derivative with a∈(1,2)is established.The estimation of the truncation error and the properties of the coefficients are discussed.In addition,a numerical example is given to verify the correctness of the derived L2 discrete formula.展开更多
Let Q be the Q-matrix of an irreducible, positive recurrent Markov process on a countable state space. We show that, under a number of conditions, the stationary distributions of the n × n north-west corner augme...Let Q be the Q-matrix of an irreducible, positive recurrent Markov process on a countable state space. We show that, under a number of conditions, the stationary distributions of the n × n north-west corner augmentations of Q converge in total variation to the stationary distribution of the process. Two conditions guaranteeing such convergence include exponential ergodicity and stochastic monotonicity of the process. The same also holds for processes dominated by a stochastically monotone Markov process. In addition, we shall show that finite perturbations of stochastically monotone processes may be viewed as being dominated by a stochastically monotone process, thus extending the scope of these results to a larger class of processes. Consequently, the augmentation method provides an attractive, intuitive method for approximating the stationary distributions of a large class of Markov processes on countably infinite state spaces from a finite amount of known information.展开更多
通过添加部分缺失寿命变量数据,得到了删失截断情形下失效率变点模型相对简单的似然函数.讨论了所添加缺失数据变量的概率分布和随机抽样方法.利用Monte Carlo EM算法对未知参数进行了迭代.结合Metropolis-Hastings算法对参数的满条件...通过添加部分缺失寿命变量数据,得到了删失截断情形下失效率变点模型相对简单的似然函数.讨论了所添加缺失数据变量的概率分布和随机抽样方法.利用Monte Carlo EM算法对未知参数进行了迭代.结合Metropolis-Hastings算法对参数的满条件分布进行了Gibbs抽样,基于Gibbs样本对参数进行估计,详细介绍了MCMC方法的实施步骤.随机模拟试验的结果表明各参数Bayes估计的精度较高.展开更多
文摘In this paper explicit expressions and some recurrence relations are derived for marginal and joint moment generating functions of generalized order statistics from Erlang-truncated exponential distribution. The results for k-th record values and order statistics are deduced from the relations derived. Further, a characterizing result of this distribution on using the conditional expectation of function of generalized order statistics is discussed.
文摘The present article mainly focuses on the fractional derivatives with an exponential kernel(“exponential fractional derivatives”for brevity).First,several extended integral transforms of the exponential fractional derivatives are proposed,including the Fourier transform and the Laplace transform.Then,the L2 discretisation for the exponential Caputo derivative with a∈(1,2)is established.The estimation of the truncation error and the properties of the coefficients are discussed.In addition,a numerical example is given to verify the correctness of the derived L2 discrete formula.
文摘Let Q be the Q-matrix of an irreducible, positive recurrent Markov process on a countable state space. We show that, under a number of conditions, the stationary distributions of the n × n north-west corner augmentations of Q converge in total variation to the stationary distribution of the process. Two conditions guaranteeing such convergence include exponential ergodicity and stochastic monotonicity of the process. The same also holds for processes dominated by a stochastically monotone Markov process. In addition, we shall show that finite perturbations of stochastically monotone processes may be viewed as being dominated by a stochastically monotone process, thus extending the scope of these results to a larger class of processes. Consequently, the augmentation method provides an attractive, intuitive method for approximating the stationary distributions of a large class of Markov processes on countably infinite state spaces from a finite amount of known information.
文摘通过添加部分缺失寿命变量数据,得到了删失截断情形下失效率变点模型相对简单的似然函数.讨论了所添加缺失数据变量的概率分布和随机抽样方法.利用Monte Carlo EM算法对未知参数进行了迭代.结合Metropolis-Hastings算法对参数的满条件分布进行了Gibbs抽样,基于Gibbs样本对参数进行估计,详细介绍了MCMC方法的实施步骤.随机模拟试验的结果表明各参数Bayes估计的精度较高.