We obtain the H?lder continuity and joint H?lder continuity in space and time for the random field solution to the parabolic Anderson equation ■ in d-dimensional space, where ■ is a mean zero Gaussian noise with tem...We obtain the H?lder continuity and joint H?lder continuity in space and time for the random field solution to the parabolic Anderson equation ■ in d-dimensional space, where ■ is a mean zero Gaussian noise with temporal covariance γ0 and spatial covariance given by a spectral density μ(ξ). We assume that ■ and ■ , where αi, i = 1, · · ·, d(or α) can take negative value.展开更多
Let A and B satisfy the structural conditions (2), the local Holder continuity interior to Q = G X (0, T) is proved for the generalized solutions of quasilinear parabolic equations as follows: u(t) - divA(x, t, u, del...Let A and B satisfy the structural conditions (2), the local Holder continuity interior to Q = G X (0, T) is proved for the generalized solutions of quasilinear parabolic equations as follows: u(t) - divA(x, t, u, del u) + B(x, t, U, del u) = 0.展开更多
The sufficient conditions of Holder continuity of two kinds of fractal interpolation functions defined by IFS (Iterated Function System) were obtained. The sufficient and necessary condition for its differentiability ...The sufficient conditions of Holder continuity of two kinds of fractal interpolation functions defined by IFS (Iterated Function System) were obtained. The sufficient and necessary condition for its differentiability was proved. Its derivative was a fractal interpolation function generated by the associated IFS, if it is differentiable.展开更多
In this article, the non-self dual extended Harper's model with a Liouville frequency is considered. It is shown that the corresponding integrated density of states is 1/2-Holder continuous. As an application, the...In this article, the non-self dual extended Harper's model with a Liouville frequency is considered. It is shown that the corresponding integrated density of states is 1/2-Holder continuous. As an application, the homogeneity of the spectrum is proven.展开更多
Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quan...Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quantum mechanics and value problems.In this paper,we first give the definition of a quasi-Cauchy type integral in complex Clifford analysis,and get the Plemelj formula for it.Second,we discuss the H?lder continuity for the Cauchy-type integral operators with values in a complex Clifford algebra.Finally,we prove the existence of solutions for a class of linear boundary value problems and give the integral representation for the solution.展开更多
We show the existence of Holder continuous periodic weak solutions of the 2D Boussinesq equation with thermal diffusion which satisfy the prescribed kinetic energy.More precisely,for any smooth e(t):[0,1]→R+andε∈(0...We show the existence of Holder continuous periodic weak solutions of the 2D Boussinesq equation with thermal diffusion which satisfy the prescribed kinetic energy.More precisely,for any smooth e(t):[0,1]→R+andε∈(0,110),there exist v∈C 110−ε([0,1]×T2)andθ∈C 1,120−εt 2 C 2,1 x 10−ε([0,1]×T2),which satisfy(1.1)in the sense of distribution and e(t)=ˆT2|v(t,x)|2 dx,∀t∈[0,1].展开更多
基金supported by an NSERC granta startup fund of University of Albertasupported by Martin Hairer’s Leverhulme Trust leadership award
文摘We obtain the H?lder continuity and joint H?lder continuity in space and time for the random field solution to the parabolic Anderson equation ■ in d-dimensional space, where ■ is a mean zero Gaussian noise with temporal covariance γ0 and spatial covariance given by a spectral density μ(ξ). We assume that ■ and ■ , where αi, i = 1, · · ·, d(or α) can take negative value.
文摘Let A and B satisfy the structural conditions (2), the local Holder continuity interior to Q = G X (0, T) is proved for the generalized solutions of quasilinear parabolic equations as follows: u(t) - divA(x, t, u, del u) + B(x, t, U, del u) = 0.
文摘The sufficient conditions of Holder continuity of two kinds of fractal interpolation functions defined by IFS (Iterated Function System) were obtained. The sufficient and necessary condition for its differentiability was proved. Its derivative was a fractal interpolation function generated by the associated IFS, if it is differentiable.
基金supported by China Postdoctoral Science Foundation(2018M641050)
文摘In this article, the non-self dual extended Harper's model with a Liouville frequency is considered. It is shown that the corresponding integrated density of states is 1/2-Holder continuous. As an application, the homogeneity of the spectrum is proven.
基金supported by the NSF of Hebei Province(A2022208007)the NSF of China(11571089,11871191)the NSF of Henan Province(222300420397)。
文摘Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quantum mechanics and value problems.In this paper,we first give the definition of a quasi-Cauchy type integral in complex Clifford analysis,and get the Plemelj formula for it.Second,we discuss the H?lder continuity for the Cauchy-type integral operators with values in a complex Clifford algebra.Finally,we prove the existence of solutions for a class of linear boundary value problems and give the integral representation for the solution.
基金supported by National Natural Science Foundation of China(Grant No.11971464)supported by National Natural Science Foundation of China(Grant No.11901349)supported by National Natural Science Foundation of China(Grant Nos.11471320 and 11631008)。
文摘We show the existence of Holder continuous periodic weak solutions of the 2D Boussinesq equation with thermal diffusion which satisfy the prescribed kinetic energy.More precisely,for any smooth e(t):[0,1]→R+andε∈(0,110),there exist v∈C 110−ε([0,1]×T2)andθ∈C 1,120−εt 2 C 2,1 x 10−ε([0,1]×T2),which satisfy(1.1)in the sense of distribution and e(t)=ˆT2|v(t,x)|2 dx,∀t∈[0,1].