E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that m...E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that mediates the ubiquitination of BOS1 (Botrytis susceptible1), a transcription factor involved in stress and pathogen responses. Although BOI is an E3 ligase, there are reports to show that BOI interacts with target proteins such as DELLAs or CONSTANS to repress gibberellin responses and flowering without the degradation of the target proteins. In this article, we utilize diversified methods to comprehensively analyze the expression pattern, interaction network and function of BOI gene. Firstly, 1800 bp upstream region of BOI gene from Arabidopsis thaliana (Arabidopsis) genome was isolated, and fused GUS reporter gene. The resulting expression cassette was introduced into wild-type Arabidopsis through Agrobacterium-mediated transformation. The result demonstrated that BOI gene was expressed predominantly in leaves, siliques, young roots, and flowering tissues, indicating that BOI gene may be involved in multiple processes in plant growth and development in Arabidopsis. Besides, eight candidate interacting proteins were obtained from the Arabidopsis cDNA library via yeast two-hybrid technology, including EXO70E2 (AT5G61010), WRKY7 (AT4G24240), WRKY11 (AT4G31550), WRKY17 (AT2G24570), UBP20 (AT4G17895), L5 (AT1G12290), SAUR9 (AT4G36110) and TCP21 (AT5G08330). Functional analysis of these candidate interacting proteins manifested that they related to multiple pathways, including biological and abiotic stress, programmed cell death, protein degradation, material metabolism and transcriptional regulation. In addition, the results of the transient assay proclaimed that BOI protein affects the protein stability of EXO70E2 and L5 through its E3 ubiquitin ligase activity. Our results provide novel clues for a better understanding of molecular mechanisms underlying BOI-mediated regulations.展开更多
AIM: To identify and understand the relationship between co-expression pattern and clinic traits in uveal melanoma, weighted gene co-expression network analysis(WGCNA) is applied to investigate the gene expression lev...AIM: To identify and understand the relationship between co-expression pattern and clinic traits in uveal melanoma, weighted gene co-expression network analysis(WGCNA) is applied to investigate the gene expression levels and patient clinic features. Uveal melanoma is the most common primary eye tumor in adults. Although many studies have identified some important genes and pathways that were relevant to progress of uveal melanoma, the relationship between co-expression and clinic traits in systems level of uveal melanoma is unclear yet. We employ WGCNA to investigate the relationship underlying molecular and phenotype in this study.METHODS: Gene expression profile of uveal melanoma and patient clinic traits were collected from the Gene Expression Omnibus(GEO) database. The gene co-expression is calculated by WGCNA that is the R package software. The package is used to analyze the correlation between pairs of expression levels of genes.The function of the genes were annotated by gene ontology(GO).RESULTS: In this study, we identified four co-expression modules significantly correlated with clinictraits. Module blue positively correlated with radiotherapy treatment. Module purple positively correlates with tumor location(sclera) and negatively correlates with patient age. Module red positively correlates with sclera and negatively correlates with thickness of tumor. Module black positively correlates with the largest tumor diameter(LTD). Additionally, we identified the hug gene(top connectivity with other genes) in each module. The hub gene RPS15 A, PTGDS, CD53 and MSI2 might play a vital role in progress of uveal melanoma.CONCLUSION: From WGCNA analysis and hub gene calculation, we identified RPS15 A, PTGDS, CD53 and MSI2 might be target or diagnosis for uveal melanoma.展开更多
Esophageal cancer is a common malignant tumor, whose pathogenesis and prognosis factors are not fully understood. This study aimed to discover the gene clusters that have similar functions and can be used to predict t...Esophageal cancer is a common malignant tumor, whose pathogenesis and prognosis factors are not fully understood. This study aimed to discover the gene clusters that have similar functions and can be used to predict the prognosis of esophageal cancer. The matched microarray and RNA sequencing data of 185 patients with esophageal cancer were downloaded from The Cancer Genome Atlas(TCGA), and gene co-expression networks were built without distinguishing between squamous carcinoma and adenocarcinoma. The result showed that 12 modules were associated with one or more survival data such as recurrence status, recurrence time, vital status or vital time. Furthermore, survival analysis showed that 5 out of the 12 modules were related to progression-free survival(PFS) or overall survival(OS). As the most important module, the midnight blue module with 82 genes was related to PFS, apart from the patient age, tumor grade, primary treatment success, and duration of smoking and tumor histological type. Gene ontology enrichment analysis revealed that 'glycoprotein binding' was the top enriched function of midnight blue module genes. Additionally, the blue module was the exclusive gene clusters related to OS. Platelet activating factor receptor(PTAFR) and feline Gardner-Rasheed(FGR) were the top hub genes in both modeling datasets and the STRING protein interaction database. In conclusion, our study provides novel insights into the prognosis-associated genes and screens out candidate biomarkers for esophageal cancer.展开更多
To handle the handover challenge in Express Train Access Networks(ETAN).mobility fading effects in high speed railway environments should be addressed first.Based on the investigation of fading effects in this paper,w...To handle the handover challenge in Express Train Access Networks(ETAN).mobility fading effects in high speed railway environments should be addressed first.Based on the investigation of fading effects in this paper,we obtain two theoretical bounds:HOTiming upper bound and HO-Margin lower bound,which are helpful guidelines to study the handover challenge today and in the future.Then,we apply them to analyze performance of conventional handover technologies and our proposal in ETAN.This follow-up theory analyses and simulation experiment results demonstrate that the proposed handover solution can minimize handover time up to 4ms(which is the fastest one so far),and reduce HO-Margin to 0.16 dB at a train speed of 350km/h.展开更多
Objective: To identify module genes that are closely related to clinical features of hepatocellular carcinoma (HCC) by weighted gene co‑expression network analysis, and to provide a reference for early clinical diagno...Objective: To identify module genes that are closely related to clinical features of hepatocellular carcinoma (HCC) by weighted gene co‑expression network analysis, and to provide a reference for early clinical diagnosis and treatment. Methods: GSE84598 chip data were downloaded from the GEO database, and module genes closely related to the clinical features of HCC were extracted by comprehensive weighted gene co‑expression network analysis. Hub genes were identified through protein interaction network analysis by the maximum clique centrality (MCC) algorithm;Finally, the expression of hub genes was validated by TCGA database and the Kaplan Meier plotter online database was used to evaluate the prognostic relationship between hub genes and HCC patients. Results: By comparing the gene expression data between HCC tissue samples and normal liver tissue samples, a total of 6 262 differentially expressed genes were obtained, of which 2 207 were upregulated and 4 055 were downregulated. Weighted gene co‑expression network analysis was applied to identify 120 genes of key modules. By intersecting with the differentially expressed genes, 115 candidate hub genes were obtained. The results of enrichment analysis showed that the candidate hub genes were closely related to cell mitosis, p53 signaling pathway and so on. Further application of the MCC algorithm to the protein interaction network of 115 candidate hub genes identified five hub genes, namely NUF2, RRM2, UBE2C, CDC20 and MAD2L1. Validation of hub genes by TCGA database revealed that all five hub genes were significantly upregulated in HCC tissues compared to normal liver tissues;Moreover, survival analysis revealed that high expression of hub genes was closely associated with poor prognosis in HCC patients. Conclusions: This study identifies five hub genes by combining multiple databases, which may provide directions for the clinical diagnosis and treatment of HCC.展开更多
Based on the heat flow data published in 1990 and 2001, a study of the factors influencing the terrestrial heat flow distribution in the China continent and its quantitative expression is carried out using the "Netli...Based on the heat flow data published in 1990 and 2001, a study of the factors influencing the terrestrial heat flow distribution in the China continent and its quantitative expression is carried out using the "Netlike Plastic-Flow" continental dynamics model and the methods of statistic analysis and optimum fitting. The result indicates that the factors influencing the heat flow distribution is classified into two groups, i.e. background and tectonic ones, in which the former mainly involves the non- uniform distribution of mantle heat flow, heat production of radioactive dements in the crust, heattransfer media and hydrothermal circulation, while the latter mainly involves plastic-flow networks and relatively-stable blocks. The plastic-flow network is a manifestation of shear localization in the netlike plastic-flow process in the lower lithosphere, which is composed of two sets of plastic-flow belts (PFBs) intersecting each other and, as one of the basic action regimes, controls the intraplate tectonic deformation. Relatively stable blocks (RSBs), which are the tectonic units with relatively-high viscosities existing in the netlike plastic-flow field, as one of the principal origins, result in the development of large-seale compressional basins. PFB and RSB, as the active and quiet states of tectonic deformation, give rise to the higher and lower heat flow values, respectivdy. The provincial average heat flow in continent can be estimated using the expression qav = q0 + a Pbt-c Pbk, where the three terms of the right side are background heat flow, PFB-positive contribution and RSB-negative contribution, Pbt and Pbk are the PFB- and RSB-coverage ratios, respectively, a is the coefficient of PFB- positive contribution depending mainly on the strain in the lower lithosphere, and c is the coefficient of RSB-negative contribution related mainly to the thickness of the lithosphere, the aseismic-area ratio and the tectonic age. For the major portion of the China continent excluding some of the southeastern region of China, the confidence interval of the provincial average background heat flow is qo=57.25±24.8 mW/m^2 and the PFB-positive- and RSB-negative-contribution coefficients are a=14.8-71.9 mW/m^2 and c=0-25.6 mW/m^2, respectively. The concepts of PFB and RSB effects and the heat flow expression suggested provide a new choice of the approach to the quantitative description of the characteristics of heat flow distribution in continent and their physical mechanisms.展开更多
This paper proposes a technique for synthesizing a pixel-based photo-realistic talking face animation using two-step synthesis with HMMs and DNNs. We introduce facial expression parameters as an intermediate represent...This paper proposes a technique for synthesizing a pixel-based photo-realistic talking face animation using two-step synthesis with HMMs and DNNs. We introduce facial expression parameters as an intermediate representation that has a good correspondence with both of the input contexts and the output pixel data of face images. The sequences of the facial expression parameters are modeled using context-dependent HMMs with static and dynamic features. The mapping from the expression parameters to the target pixel images are trained using DNNs. We examine the required amount of the training data for HMMs and DNNs and compare the performance of the proposed technique with the conventional PCA-based technique through objective and subjective evaluation experiments.展开更多
Module-based methods have made much progress in deconstructing biological networks.However,it is a great challenge to quantitatively compare the topological structural variations of modules(allosteric modules,AMs)unde...Module-based methods have made much progress in deconstructing biological networks.However,it is a great challenge to quantitatively compare the topological structural variations of modules(allosteric modules,AMs)under different situations.A total of 23,42 and 15co-expression modules were identified in baicalin(BA),jasminoidin(JA)and ursodeoxycholic acid(UA)in a global anti-ischemic mice network,respectively.Then,we integrated the methods of module-based consensus ratio(MCR)and modified Z summary module statistic to validate 12 BA,22 JA and 8 UA on-modules based on comparing with vehicle.The MCRs for pairwise comparisons were 1.55%(BA vs JA),1.45%(BA vs UA),and1.27%(JA vs UA),respectively.Five conserved allosteric modules(CAMs)and 17 unique allosteric modules(UAMs)were identified among these groups.In conclusion,module-centric analysis may provide us a unique approach to understand multiple pharmacological mechanisms associated with differential phenotypes in the era of modular pharmacology.展开更多
AIM: To identify the pathogenic genes in pterygium.METHODS: We obtained m RNA expression profiles from the Gene Expression Omnibus database(GEO) to identify differentially expressed genes(DEGs) between pterygium tissu...AIM: To identify the pathogenic genes in pterygium.METHODS: We obtained m RNA expression profiles from the Gene Expression Omnibus database(GEO) to identify differentially expressed genes(DEGs) between pterygium tissues and normal conjunctiva tissues. The Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis, protein-protein interaction(PPI) network and transcription factors(TFs)-target gene regulatory network was performed to understand the function of DEGs. The expression of selected DEGs were validated by the quantitative real-time polymerase chain reaction(qRT-PCR).RESULTS: A total of 557 DEGs were identified between pterygium and normal individual. In PPI network, several genes were with high degrees such as FN1, KPNB1, DDB1, NF2 and BUB3. SSH1, PRSS23, LRP5L, MEOX1, RBM14, ABCA1, JOSD1, KRT6 A and UPK1B were the most downstream genes regulated by TFs. q RT-PCR results showed that FN1, PRSS23, ABCA1, KRT6A, ECT2 and SPARC were significantly up-regulated in pterygium and MEOX1 and MMP3 were also up-regulated with no significance, which was consistent with the our integrated analysis. CONCLUSION: The deregulated genes might be involved in the pathology of pterygium and could be used as treatment targets for pterygium.展开更多
The analysis of messenger Ribonucleic acid obtained through sequencing techniques (RNA-se- quencing) data is very challenging. Once technical difficulties have been sorted, an important choice has to be made during pr...The analysis of messenger Ribonucleic acid obtained through sequencing techniques (RNA-se- quencing) data is very challenging. Once technical difficulties have been sorted, an important choice has to be made during pre-processing: Two different paths can be chosen: Transform RNA- sequencing count data to a continuous variable or continue to work with count data. For each data type, analysis tools have been developed and seem appropriate at first sight, but a deeper analysis of data distribution and structure, are a discussion worth. In this review, open questions regarding RNA-sequencing data nature are discussed and highlighted, indicating important future research topics in statistics that should be addressed for a better analysis of already available and new appearing gene expression data. Moreover, a comparative analysis of RNAseq count and transformed data is presented. This comparison indicates that transforming RNA-seq count data seems appropriate, at least for differential expression detection.展开更多
Gene regulatory networks play an important role the molecular mechanism underlying biological processes. Modeling of these networks is an important challenge to be addressed in the post genomic era. Several methods ha...Gene regulatory networks play an important role the molecular mechanism underlying biological processes. Modeling of these networks is an important challenge to be addressed in the post genomic era. Several methods have been proposed for estimating gene networks from gene expression data. Computational methods for development of network models and analysis of their functionality have proved to be valuable tools in bioinformatics applications. In this paper we tried to review the different methods for reconstructing gene regulatory networks.展开更多
文摘E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that mediates the ubiquitination of BOS1 (Botrytis susceptible1), a transcription factor involved in stress and pathogen responses. Although BOI is an E3 ligase, there are reports to show that BOI interacts with target proteins such as DELLAs or CONSTANS to repress gibberellin responses and flowering without the degradation of the target proteins. In this article, we utilize diversified methods to comprehensively analyze the expression pattern, interaction network and function of BOI gene. Firstly, 1800 bp upstream region of BOI gene from Arabidopsis thaliana (Arabidopsis) genome was isolated, and fused GUS reporter gene. The resulting expression cassette was introduced into wild-type Arabidopsis through Agrobacterium-mediated transformation. The result demonstrated that BOI gene was expressed predominantly in leaves, siliques, young roots, and flowering tissues, indicating that BOI gene may be involved in multiple processes in plant growth and development in Arabidopsis. Besides, eight candidate interacting proteins were obtained from the Arabidopsis cDNA library via yeast two-hybrid technology, including EXO70E2 (AT5G61010), WRKY7 (AT4G24240), WRKY11 (AT4G31550), WRKY17 (AT2G24570), UBP20 (AT4G17895), L5 (AT1G12290), SAUR9 (AT4G36110) and TCP21 (AT5G08330). Functional analysis of these candidate interacting proteins manifested that they related to multiple pathways, including biological and abiotic stress, programmed cell death, protein degradation, material metabolism and transcriptional regulation. In addition, the results of the transient assay proclaimed that BOI protein affects the protein stability of EXO70E2 and L5 through its E3 ubiquitin ligase activity. Our results provide novel clues for a better understanding of molecular mechanisms underlying BOI-mediated regulations.
基金Supported by the National Natural Science Foundation of China(No.81271019No.61463046)Gansu Province Science Foundation for Youths(No.145RJYA282)
文摘AIM: To identify and understand the relationship between co-expression pattern and clinic traits in uveal melanoma, weighted gene co-expression network analysis(WGCNA) is applied to investigate the gene expression levels and patient clinic features. Uveal melanoma is the most common primary eye tumor in adults. Although many studies have identified some important genes and pathways that were relevant to progress of uveal melanoma, the relationship between co-expression and clinic traits in systems level of uveal melanoma is unclear yet. We employ WGCNA to investigate the relationship underlying molecular and phenotype in this study.METHODS: Gene expression profile of uveal melanoma and patient clinic traits were collected from the Gene Expression Omnibus(GEO) database. The gene co-expression is calculated by WGCNA that is the R package software. The package is used to analyze the correlation between pairs of expression levels of genes.The function of the genes were annotated by gene ontology(GO).RESULTS: In this study, we identified four co-expression modules significantly correlated with clinictraits. Module blue positively correlated with radiotherapy treatment. Module purple positively correlates with tumor location(sclera) and negatively correlates with patient age. Module red positively correlates with sclera and negatively correlates with thickness of tumor. Module black positively correlates with the largest tumor diameter(LTD). Additionally, we identified the hug gene(top connectivity with other genes) in each module. The hub gene RPS15 A, PTGDS, CD53 and MSI2 might play a vital role in progress of uveal melanoma.CONCLUSION: From WGCNA analysis and hub gene calculation, we identified RPS15 A, PTGDS, CD53 and MSI2 might be target or diagnosis for uveal melanoma.
文摘Esophageal cancer is a common malignant tumor, whose pathogenesis and prognosis factors are not fully understood. This study aimed to discover the gene clusters that have similar functions and can be used to predict the prognosis of esophageal cancer. The matched microarray and RNA sequencing data of 185 patients with esophageal cancer were downloaded from The Cancer Genome Atlas(TCGA), and gene co-expression networks were built without distinguishing between squamous carcinoma and adenocarcinoma. The result showed that 12 modules were associated with one or more survival data such as recurrence status, recurrence time, vital status or vital time. Furthermore, survival analysis showed that 5 out of the 12 modules were related to progression-free survival(PFS) or overall survival(OS). As the most important module, the midnight blue module with 82 genes was related to PFS, apart from the patient age, tumor grade, primary treatment success, and duration of smoking and tumor histological type. Gene ontology enrichment analysis revealed that 'glycoprotein binding' was the top enriched function of midnight blue module genes. Additionally, the blue module was the exclusive gene clusters related to OS. Platelet activating factor receptor(PTAFR) and feline Gardner-Rasheed(FGR) were the top hub genes in both modeling datasets and the STRING protein interaction database. In conclusion, our study provides novel insights into the prognosis-associated genes and screens out candidate biomarkers for esophageal cancer.
基金supported by the National Basic Research Program of China (973 Program)(No.2012CB315606 and 2010CB328201)
文摘To handle the handover challenge in Express Train Access Networks(ETAN).mobility fading effects in high speed railway environments should be addressed first.Based on the investigation of fading effects in this paper,we obtain two theoretical bounds:HOTiming upper bound and HO-Margin lower bound,which are helpful guidelines to study the handover challenge today and in the future.Then,we apply them to analyze performance of conventional handover technologies and our proposal in ETAN.This follow-up theory analyses and simulation experiment results demonstrate that the proposed handover solution can minimize handover time up to 4ms(which is the fastest one so far),and reduce HO-Margin to 0.16 dB at a train speed of 350km/h.
基金National Natural Science Foundation of China (No.81760851)Guangxi University Youth Promotion Program (No.2019KY0348)。
文摘Objective: To identify module genes that are closely related to clinical features of hepatocellular carcinoma (HCC) by weighted gene co‑expression network analysis, and to provide a reference for early clinical diagnosis and treatment. Methods: GSE84598 chip data were downloaded from the GEO database, and module genes closely related to the clinical features of HCC were extracted by comprehensive weighted gene co‑expression network analysis. Hub genes were identified through protein interaction network analysis by the maximum clique centrality (MCC) algorithm;Finally, the expression of hub genes was validated by TCGA database and the Kaplan Meier plotter online database was used to evaluate the prognostic relationship between hub genes and HCC patients. Results: By comparing the gene expression data between HCC tissue samples and normal liver tissue samples, a total of 6 262 differentially expressed genes were obtained, of which 2 207 were upregulated and 4 055 were downregulated. Weighted gene co‑expression network analysis was applied to identify 120 genes of key modules. By intersecting with the differentially expressed genes, 115 candidate hub genes were obtained. The results of enrichment analysis showed that the candidate hub genes were closely related to cell mitosis, p53 signaling pathway and so on. Further application of the MCC algorithm to the protein interaction network of 115 candidate hub genes identified five hub genes, namely NUF2, RRM2, UBE2C, CDC20 and MAD2L1. Validation of hub genes by TCGA database revealed that all five hub genes were significantly upregulated in HCC tissues compared to normal liver tissues;Moreover, survival analysis revealed that high expression of hub genes was closely associated with poor prognosis in HCC patients. Conclusions: This study identifies five hub genes by combining multiple databases, which may provide directions for the clinical diagnosis and treatment of HCC.
文摘Based on the heat flow data published in 1990 and 2001, a study of the factors influencing the terrestrial heat flow distribution in the China continent and its quantitative expression is carried out using the "Netlike Plastic-Flow" continental dynamics model and the methods of statistic analysis and optimum fitting. The result indicates that the factors influencing the heat flow distribution is classified into two groups, i.e. background and tectonic ones, in which the former mainly involves the non- uniform distribution of mantle heat flow, heat production of radioactive dements in the crust, heattransfer media and hydrothermal circulation, while the latter mainly involves plastic-flow networks and relatively-stable blocks. The plastic-flow network is a manifestation of shear localization in the netlike plastic-flow process in the lower lithosphere, which is composed of two sets of plastic-flow belts (PFBs) intersecting each other and, as one of the basic action regimes, controls the intraplate tectonic deformation. Relatively stable blocks (RSBs), which are the tectonic units with relatively-high viscosities existing in the netlike plastic-flow field, as one of the principal origins, result in the development of large-seale compressional basins. PFB and RSB, as the active and quiet states of tectonic deformation, give rise to the higher and lower heat flow values, respectivdy. The provincial average heat flow in continent can be estimated using the expression qav = q0 + a Pbt-c Pbk, where the three terms of the right side are background heat flow, PFB-positive contribution and RSB-negative contribution, Pbt and Pbk are the PFB- and RSB-coverage ratios, respectively, a is the coefficient of PFB- positive contribution depending mainly on the strain in the lower lithosphere, and c is the coefficient of RSB-negative contribution related mainly to the thickness of the lithosphere, the aseismic-area ratio and the tectonic age. For the major portion of the China continent excluding some of the southeastern region of China, the confidence interval of the provincial average background heat flow is qo=57.25±24.8 mW/m^2 and the PFB-positive- and RSB-negative-contribution coefficients are a=14.8-71.9 mW/m^2 and c=0-25.6 mW/m^2, respectively. The concepts of PFB and RSB effects and the heat flow expression suggested provide a new choice of the approach to the quantitative description of the characteristics of heat flow distribution in continent and their physical mechanisms.
文摘This paper proposes a technique for synthesizing a pixel-based photo-realistic talking face animation using two-step synthesis with HMMs and DNNs. We introduce facial expression parameters as an intermediate representation that has a good correspondence with both of the input contexts and the output pixel data of face images. The sequences of the facial expression parameters are modeled using context-dependent HMMs with static and dynamic features. The mapping from the expression parameters to the target pixel images are trained using DNNs. We examine the required amount of the training data for HMMs and DNNs and compare the performance of the proposed technique with the conventional PCA-based technique through objective and subjective evaluation experiments.
基金The project supported by National Natural Science Foundation of China(90209015)the Foundation of'Eleventh Five'National Key Technologies R&D Program(2006BAI08B04-06)
文摘Module-based methods have made much progress in deconstructing biological networks.However,it is a great challenge to quantitatively compare the topological structural variations of modules(allosteric modules,AMs)under different situations.A total of 23,42 and 15co-expression modules were identified in baicalin(BA),jasminoidin(JA)and ursodeoxycholic acid(UA)in a global anti-ischemic mice network,respectively.Then,we integrated the methods of module-based consensus ratio(MCR)and modified Z summary module statistic to validate 12 BA,22 JA and 8 UA on-modules based on comparing with vehicle.The MCRs for pairwise comparisons were 1.55%(BA vs JA),1.45%(BA vs UA),and1.27%(JA vs UA),respectively.Five conserved allosteric modules(CAMs)and 17 unique allosteric modules(UAMs)were identified among these groups.In conclusion,module-centric analysis may provide us a unique approach to understand multiple pharmacological mechanisms associated with differential phenotypes in the era of modular pharmacology.
基金Supported by Science and Technology Development Fund of Bengbu Medical College(No.BYFY1785)
文摘AIM: To identify the pathogenic genes in pterygium.METHODS: We obtained m RNA expression profiles from the Gene Expression Omnibus database(GEO) to identify differentially expressed genes(DEGs) between pterygium tissues and normal conjunctiva tissues. The Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis, protein-protein interaction(PPI) network and transcription factors(TFs)-target gene regulatory network was performed to understand the function of DEGs. The expression of selected DEGs were validated by the quantitative real-time polymerase chain reaction(qRT-PCR).RESULTS: A total of 557 DEGs were identified between pterygium and normal individual. In PPI network, several genes were with high degrees such as FN1, KPNB1, DDB1, NF2 and BUB3. SSH1, PRSS23, LRP5L, MEOX1, RBM14, ABCA1, JOSD1, KRT6 A and UPK1B were the most downstream genes regulated by TFs. q RT-PCR results showed that FN1, PRSS23, ABCA1, KRT6A, ECT2 and SPARC were significantly up-regulated in pterygium and MEOX1 and MMP3 were also up-regulated with no significance, which was consistent with the our integrated analysis. CONCLUSION: The deregulated genes might be involved in the pathology of pterygium and could be used as treatment targets for pterygium.
文摘The analysis of messenger Ribonucleic acid obtained through sequencing techniques (RNA-se- quencing) data is very challenging. Once technical difficulties have been sorted, an important choice has to be made during pre-processing: Two different paths can be chosen: Transform RNA- sequencing count data to a continuous variable or continue to work with count data. For each data type, analysis tools have been developed and seem appropriate at first sight, but a deeper analysis of data distribution and structure, are a discussion worth. In this review, open questions regarding RNA-sequencing data nature are discussed and highlighted, indicating important future research topics in statistics that should be addressed for a better analysis of already available and new appearing gene expression data. Moreover, a comparative analysis of RNAseq count and transformed data is presented. This comparison indicates that transforming RNA-seq count data seems appropriate, at least for differential expression detection.
文摘Gene regulatory networks play an important role the molecular mechanism underlying biological processes. Modeling of these networks is an important challenge to be addressed in the post genomic era. Several methods have been proposed for estimating gene networks from gene expression data. Computational methods for development of network models and analysis of their functionality have proved to be valuable tools in bioinformatics applications. In this paper we tried to review the different methods for reconstructing gene regulatory networks.