Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormone...Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormones and abiotic stresses are well documented in various species, but their roles in cotton fiber development are poorly understood. To date, genome wide identification and expression analyses of Gossypium hirsutum RH2FE3 genes have not been reported. Methods: We performed computational identification, structural and phylogenetic analyses, chromosomal distribution analysis and estimated KJKs values of G hirsutum RH2FE3 genes. Orthologous and paralogous gene pairs were identified by all versus all BLASTP searches. We predicted cis regulatory elements and analyzed microarray data sets to generate heatmaps at different development stages. Tissue specific expression in cotton fiber, and hormonal and abiotic stress responses were determined by quantitative real time polymerase chain reaction (qRT PCR) analysis. Results: We investigated 140 G hirsutum, 80 G. orboreum, and evolutionary mechanisms and compared them with orthologs 89 G. roimondii putative RH2FB genes and their in Arobidopsis and rice. A domain based analysis of the G hirsutum RH2FE3 genes predicted conserved signature motifs and gene structures. Chromosomal localization showed the genes were distributed across all G hirsutum chromosomes, and 60 duplication events (4 tandem and 56 segmental duplications) and 98 orthologs were detected, cis elements were detected in the promoter regions of G hirsutum RH2FE3 genes. Microarray data and qRT PCR analyses showed that G hirsutum RH2FE3 genes were strongly correlated with cotton fiber development. Additionally, almost all the (brassinolide, gibberellic acid (GA), indole 3-acetic acid drought, and salt). dentified genes were up regulated in response to phytohormones (IAA), and salicylic acid (SA)) and abiotic stresses (cold, heat, Conclusions: The genome wide identification, comprehensive analysis, and characterization of conserved domains and gene structures, as well as phylogenetic analysis, cis element prediction, and expression profile analysis of G hirsutum RH2FE3 genes and their roles in cotton fiber development and responses to plant hormones and abiotic stresses are reported here for the first time. Our findings will contribute to the genome wide analysis of putative RH2FE3 genes in other species and lay a foundation for future physiological and functional research on G hirsutum RH2FE3 genes.展开更多
Objective The objective of this study was to identify new carcinogenetic hub genes and develop the integration of differentially expressed genes to predict the prognosis of lung cancer.Methods GSE139032 microarray dat...Objective The objective of this study was to identify new carcinogenetic hub genes and develop the integration of differentially expressed genes to predict the prognosis of lung cancer.Methods GSE139032 microarray data packages were downloaded from the Gene Expression Omnibus for planning,testing,and review of data.We identified KRT6C,LAMC2,LAMB3,KRT6A,and MYEOV from a key module for validation.Results We found that the five genes were related to a poor prognosis,and the expression levels of these genes were associated with tumor stage.Furthermore,Kaplan-Meier plotter showed that the five hub genes had better prognostic values.The mean levels of methylation in lung adenocarcinoma(LUAD)were significantly lower than those in healthy lung tissues for the hub genes.However,gene set enrichment analysis(GSEA)for single hub genes showed that all of them were immune-related.Conclusion Our findings demonstrated that KRT6C,LAMC2,LAMB3,KRT6A,and MYEOV are all candidate diagnostic and prognostic biomarkers for LUAD.They may have clinical implications in LUAD patients not only for the improvement of risk stratification but also for therapeutic decisions and prognosis prediction.展开更多
Cotton(Gossypium hirsutum L.) is the leading fiber crop and one of the mainstays of the economy in the world.Cotton fibers,as the main product of cotton plants,are unicellular,linear
Objective:To explore the mechanisms of fulminant hepatitis(FH) in the early stages,and to determine the critical pathways in its initiation and progression.Methods:Twelve BALB/c mice were divided into four groups:one ...Objective:To explore the mechanisms of fulminant hepatitis(FH) in the early stages,and to determine the critical pathways in its initiation and progression.Methods:Twelve BALB/c mice were divided into four groups:one group left as negative control and sacrificed immediately after injection of phosphate-buffered saline(PBS),and another three groups with concanavalin A(Con A) administration sacrificed at 1,3,and 6 h after injection.Affymetrix GeneChip Mouse 430 2.0 Array was employed to evaluate the expression profile of each of the 12 samples.Further analysis was done on the microarray data to extract the genes that were differentially expressed.Enrichment analysis was carried out to determine relevant pathways within which regulated genes were significantly enriched.Results:A total of 393,8354 and 11 344 differentially expressed genes were found,respectively,at three time points.During 0-1 h and 1-3 h,most of the pathways enriched with regulated genes were related to immune response and inflammation,among which Toll-like receptor(TLR) signaling and mitogen-activated protein kinase(MAPK) signaling appeared during both phases,while cytokine-cytokine receptor interaction,apoptosis,T cell receptor signaling,and natural killer(NK) cell-mediated cytotoxicity pathways emerged during the second phase.Pathways found to be significant during 3-6 h were mostly related to metabolic processes.Conclusion:The TLR signaling pathway dominates the early responses of Con A-induced FH in mice.It stimulates the production of type I cytokines,therefore recruiting and activating T/NK cells.Activated T/NK cells exert their cytotoxicity on hepatocytes through inducing death receptorintermediated apoptosis,resulting in liver injury.展开更多
Recent studies have shown that diet can affect the body's immunity. Roughage of dairy cows consists of a variety of plant materials which make different contributions to health. This study investigated the effect of ...Recent studies have shown that diet can affect the body's immunity. Roughage of dairy cows consists of a variety of plant materials which make different contributions to health. This study investigated the effect of different roughages on the immunity of dairy cows. Serum, peripheral blood mononuclear cells (PBMCs), and milk samples were collected from 20 multiparous mid-lactation cows fed mixed forage (MF)- or corn straw (CS)-based diets. Ex- pression profile analysis was used to detect the differentially expressed genes (DEGs) from PBMCs. The results showed that milk protein in the MF group increased to 3.22 g/100 ml, while that of the CS group milk was 2.96 g/100 ml; by RNA sequencing, it was found that 1615 genes were differentially expressed between the CS group and the MF group among the 24027 analyzed probes. Gene ontology (GO) and pathway analysis of DEGs suggested that these genes (especially genes coding cytokines, chemokine and its receptors) are involved in the immune response. Results were confirmed at the protein level via detecting the levels of interleukin-2 (IL-2), IL-6, IL-10, IL-12, leptin (LEP), interferon-γ (IFN-γ), transforming growth factor-βl (TGF-β1), and tumor necrosis factor-α (TNF-α) in peripheral blood by enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay analysis. Our data supported the conclusions that the protein content in milk of the MF group was higher than that of the CS group, the CS-based diets induced more release of cytokines than the MF-based diets in dairy cows' PBMCs, and milk protein content may be affected by cytokines.展开更多
基金supported by the Major Research Plan of National Natural Science Foundation of China(NO.31690093)Young Elite Scientist Sponsorship Program by CAST(China Association for Science and Technology)
文摘Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormones and abiotic stresses are well documented in various species, but their roles in cotton fiber development are poorly understood. To date, genome wide identification and expression analyses of Gossypium hirsutum RH2FE3 genes have not been reported. Methods: We performed computational identification, structural and phylogenetic analyses, chromosomal distribution analysis and estimated KJKs values of G hirsutum RH2FE3 genes. Orthologous and paralogous gene pairs were identified by all versus all BLASTP searches. We predicted cis regulatory elements and analyzed microarray data sets to generate heatmaps at different development stages. Tissue specific expression in cotton fiber, and hormonal and abiotic stress responses were determined by quantitative real time polymerase chain reaction (qRT PCR) analysis. Results: We investigated 140 G hirsutum, 80 G. orboreum, and evolutionary mechanisms and compared them with orthologs 89 G. roimondii putative RH2FB genes and their in Arobidopsis and rice. A domain based analysis of the G hirsutum RH2FE3 genes predicted conserved signature motifs and gene structures. Chromosomal localization showed the genes were distributed across all G hirsutum chromosomes, and 60 duplication events (4 tandem and 56 segmental duplications) and 98 orthologs were detected, cis elements were detected in the promoter regions of G hirsutum RH2FE3 genes. Microarray data and qRT PCR analyses showed that G hirsutum RH2FE3 genes were strongly correlated with cotton fiber development. Additionally, almost all the (brassinolide, gibberellic acid (GA), indole 3-acetic acid drought, and salt). dentified genes were up regulated in response to phytohormones (IAA), and salicylic acid (SA)) and abiotic stresses (cold, heat, Conclusions: The genome wide identification, comprehensive analysis, and characterization of conserved domains and gene structures, as well as phylogenetic analysis, cis element prediction, and expression profile analysis of G hirsutum RH2FE3 genes and their roles in cotton fiber development and responses to plant hormones and abiotic stresses are reported here for the first time. Our findings will contribute to the genome wide analysis of putative RH2FE3 genes in other species and lay a foundation for future physiological and functional research on G hirsutum RH2FE3 genes.
基金Supported by a grant from the Chinese Society of Clinical Oncology(No.Y-HR2018-293 and Y-HR2018-294).
文摘Objective The objective of this study was to identify new carcinogenetic hub genes and develop the integration of differentially expressed genes to predict the prognosis of lung cancer.Methods GSE139032 microarray data packages were downloaded from the Gene Expression Omnibus for planning,testing,and review of data.We identified KRT6C,LAMC2,LAMB3,KRT6A,and MYEOV from a key module for validation.Results We found that the five genes were related to a poor prognosis,and the expression levels of these genes were associated with tumor stage.Furthermore,Kaplan-Meier plotter showed that the five hub genes had better prognostic values.The mean levels of methylation in lung adenocarcinoma(LUAD)were significantly lower than those in healthy lung tissues for the hub genes.However,gene set enrichment analysis(GSEA)for single hub genes showed that all of them were immune-related.Conclusion Our findings demonstrated that KRT6C,LAMC2,LAMB3,KRT6A,and MYEOV are all candidate diagnostic and prognostic biomarkers for LUAD.They may have clinical implications in LUAD patients not only for the improvement of risk stratification but also for therapeutic decisions and prognosis prediction.
基金This work was supported by the National Natural Science Foundation of China (No 30370904and No 30671258)the National High Technology Research and Development Program(863 project)of China (No 2006AA10Z121)the Program for New Century Excellent Talents in University(No NCET-07-0712)
文摘Cotton(Gossypium hirsutum L.) is the leading fiber crop and one of the mainstays of the economy in the world.Cotton fibers,as the main product of cotton plants,are unicellular,linear
基金Project supported by the National Natural Science Foundation of China (No 30771918)the National Basic Research Program (973) of China (No 2007CB512905)the State S & T Projects (11th Five Year) (No 2008ZX10002-007) of China
文摘Objective:To explore the mechanisms of fulminant hepatitis(FH) in the early stages,and to determine the critical pathways in its initiation and progression.Methods:Twelve BALB/c mice were divided into four groups:one group left as negative control and sacrificed immediately after injection of phosphate-buffered saline(PBS),and another three groups with concanavalin A(Con A) administration sacrificed at 1,3,and 6 h after injection.Affymetrix GeneChip Mouse 430 2.0 Array was employed to evaluate the expression profile of each of the 12 samples.Further analysis was done on the microarray data to extract the genes that were differentially expressed.Enrichment analysis was carried out to determine relevant pathways within which regulated genes were significantly enriched.Results:A total of 393,8354 and 11 344 differentially expressed genes were found,respectively,at three time points.During 0-1 h and 1-3 h,most of the pathways enriched with regulated genes were related to immune response and inflammation,among which Toll-like receptor(TLR) signaling and mitogen-activated protein kinase(MAPK) signaling appeared during both phases,while cytokine-cytokine receptor interaction,apoptosis,T cell receptor signaling,and natural killer(NK) cell-mediated cytotoxicity pathways emerged during the second phase.Pathways found to be significant during 3-6 h were mostly related to metabolic processes.Conclusion:The TLR signaling pathway dominates the early responses of Con A-induced FH in mice.It stimulates the production of type I cytokines,therefore recruiting and activating T/NK cells.Activated T/NK cells exert their cytotoxicity on hepatocytes through inducing death receptorintermediated apoptosis,resulting in liver injury.
基金Project supported by the National Natural Science Foundation of China(No.31772715)the National Basic Research Program(973)of China(No.2011CB100805)
文摘Recent studies have shown that diet can affect the body's immunity. Roughage of dairy cows consists of a variety of plant materials which make different contributions to health. This study investigated the effect of different roughages on the immunity of dairy cows. Serum, peripheral blood mononuclear cells (PBMCs), and milk samples were collected from 20 multiparous mid-lactation cows fed mixed forage (MF)- or corn straw (CS)-based diets. Ex- pression profile analysis was used to detect the differentially expressed genes (DEGs) from PBMCs. The results showed that milk protein in the MF group increased to 3.22 g/100 ml, while that of the CS group milk was 2.96 g/100 ml; by RNA sequencing, it was found that 1615 genes were differentially expressed between the CS group and the MF group among the 24027 analyzed probes. Gene ontology (GO) and pathway analysis of DEGs suggested that these genes (especially genes coding cytokines, chemokine and its receptors) are involved in the immune response. Results were confirmed at the protein level via detecting the levels of interleukin-2 (IL-2), IL-6, IL-10, IL-12, leptin (LEP), interferon-γ (IFN-γ), transforming growth factor-βl (TGF-β1), and tumor necrosis factor-α (TNF-α) in peripheral blood by enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay analysis. Our data supported the conclusions that the protein content in milk of the MF group was higher than that of the CS group, the CS-based diets induced more release of cytokines than the MF-based diets in dairy cows' PBMCs, and milk protein content may be affected by cytokines.