The paper develops a multiple matching attenuation method based on extended filtering in the curvelet domain,which combines the traditional Wiener filtering method with the matching attenuation method in curvelet doma...The paper develops a multiple matching attenuation method based on extended filtering in the curvelet domain,which combines the traditional Wiener filtering method with the matching attenuation method in curvelet domain.Firstly,the method uses the predicted multiple data to generate the Hilbert transform records,time derivative records and time derivative records of Hilbert transform.Then,the above records are transformed into the curvelet domain and multiple matching attenuation based on least squares extended filtering is performed.Finally,the attenuation results are transformed back into the time-space domain.Tests on the model data and field data show that the method proposed in the paper effectively suppress the multiples while preserving the primaries well.Furthermore,it has higher accuracy in eliminating multiple reflections,which is more suitable for the multiple attenuation tasks in the areas with complex structures compared to the time-space domain extended filtering method and the conventional curvelet transform method.展开更多
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte...A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.展开更多
It is necessary to know the status of adhesion conditions between wheel and rail for efficient accelerating and decelerating of railroad vehicle.The proper estimation of adhesion conditions and their real-time impleme...It is necessary to know the status of adhesion conditions between wheel and rail for efficient accelerating and decelerating of railroad vehicle.The proper estimation of adhesion conditions and their real-time implementation is considered a challenge for scholars.In this paper,the development of simulation model of extended Kalman filter(EKF)in MATLAB/Simulink is presented to estimate various railway wheelset parameters in different contact conditions of track.Due to concurrent in nature,the Xilinx®System-on-Chip Zynq Field Programmable Gate Array(FPGA)device is chosen to check the onboard estimation ofwheel-rail interaction parameters by using the National Instruments(NI)myRIO®development board.The NImyRIO®development board is flexible to deal with nonlinearities,uncertain changes,and fastchanging dynamics in real-time occurring in wheel-rail contact conditions during vehicle operation.The simulated dataset of the railway nonlinear wheelsetmodel is tested on FPGA-based EKF with different track conditions and with accelerating and decelerating operations of the vehicle.The proposed model-based estimation of railway wheelset parameters is synthesized on FPGA and its simulation is carried out for functional verification on FPGA.The obtained simulation results are aligned with the simulation results obtained through MATLAB.To the best of our knowledge,this is the first time study that presents the implementation of a model-based estimation of railway wheelset parameters on FPGA and its functional verification.The functional behavior of the FPGA-based estimator shows that these results are the addition of current knowledge in the field of the railway.展开更多
The goal of this work is to provide an understanding of estimation technology for both linear and nonlinear dynamical systems.A critical analysis of both the Kalman filter(KF)and the extended Kalman filter(EKF)will be...The goal of this work is to provide an understanding of estimation technology for both linear and nonlinear dynamical systems.A critical analysis of both the Kalman filter(KF)and the extended Kalman filter(EKF)will be provided,along with examples to illustrate some important issues related to filtering convergence due to system modeling.A conceptual explanation of the topic with illustrative examples provided in the paper can help the readers capture the essential principles and avoid making mistakes while implementing the algorithms.Adding fictitious process noise to the system model assumed by the filter designers for convergence assurance is being investigated.A comparison of estimation accuracy with linear and nonlinear measurements is made.Parameter identification by the state estimation method through the augmentation of the state vector is also discussed.The intended readers of this article may include researchers,working engineers,or engineering students.This article can serve as a better understanding of the topic as well as a further connection to probability,stochastic process,and system theory.The lesson learned enables the readers to interpret the theory and algorithms appropriately and precisely implement the computer codes that nicely match the estimation algorithms related to the mathematical equations.This is especially helpful for those readers with less experience or background in optimal estimation theory,as it provides a solid foundation for further study on the theory and applications of the topic.展开更多
A space-time coded multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system is considered as a solution to the future wideband wireless communication system. This paper proposes a...A space-time coded multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system is considered as a solution to the future wideband wireless communication system. This paper proposes an extended Kalman filtering-based (EKF-based) channel estimation method for space-time coded MIMO-OFDM systems. The proposed method can exploit pilot symbols and an extended Kalman filter to estimate channel without any prior knowledge of channel statistics. In comparison with the least square (LS) and the least mean square (LMS) methods, the EKF-based approach has a better performance in theory. Computer simulations demonstrate the proposed method outperforms the LS and LMS methods. Therefore it can offer draznatic system performance improvement at a modest cost of computational complexity.展开更多
This paper proposes a new multi-baseline extended particle filtering phase unwrapping algorithm which combines an extended particle filter with an amended matrix pencil model and a quantized path-following strategy. T...This paper proposes a new multi-baseline extended particle filtering phase unwrapping algorithm which combines an extended particle filter with an amended matrix pencil model and a quantized path-following strategy. The contributions to multibaseline synthetic aperture radar(SAR) interferometry are as follows: a new recursive multi-baseline phase unwrapping model based on an extended particle filter is built, and the amended matrix pencil model is used to acquire phase gradient information with a higher precision and lower computational cost, and the quantized path-following strategy is introduced to guide the proposed phase unwrapping procedure to efficiently unwrap wrapped phase image along the paths routed by a phase derivative variance map.展开更多
A multisensor distributed extended Kalman filtering algorithm is presented for nonlinear system, in which the dynamic equation of the system and the equations of sensor’s measurements are linearized in the global est...A multisensor distributed extended Kalman filtering algorithm is presented for nonlinear system, in which the dynamic equation of the system and the equations of sensor’s measurements are linearized in the global estimate and global prediction respectively and the suboptimal global estimate based on all available information can be reconstructed from the estimates computed by local sensors based solely on their own local information and transmitted to the data fusion center. An analysis of the properties of the algorithm presented here shows that the global estimate has higher precision than the local one and smaller linearization error than the existing method. Finally, an application of the algorithm to radar/IR tracking of a maneuvering target is illustrated. Simulation results show the effectiveness of the algorithm.展开更多
Nonlinear estimation problem is investigated in this paper. By extension of a linear H_∞estimation with corrector-predictor form to nonlinear cases, a new extended H_∞filter is proposed for time-varying discrete-tim...Nonlinear estimation problem is investigated in this paper. By extension of a linear H_∞estimation with corrector-predictor form to nonlinear cases, a new extended H_∞filter is proposed for time-varying discrete-time nonlinear systems. The new filter has a simple observer structure based on a local linearization model, and can be viewed as a general case of the extended Kalman filter (EKF). An example demonstrates that the new filter with a suitable-chosen prescribed H_∞bound performs better than the EKF.展开更多
To provide stable and accurate position information of control points in a complex coastal environment,an adaptive iterated extended Kalman filter(AIEKF)for fixed-point positioning integrating global navigation satell...To provide stable and accurate position information of control points in a complex coastal environment,an adaptive iterated extended Kalman filter(AIEKF)for fixed-point positioning integrating global navigation satellite system,inertial navigation system,and ultra wide band(UWB)is proposed.In thismethod,the switched global navigation satellite system(GNSS)and UWB measurement are used as the measurement of the proposed filter.For the data fusion filter,the expectation-maximization(EM)based IEKF is used as the forward filter,then,the Rauch-Tung-Striebel smoother for IEKF filter’s result smoothing.Tests illustrate that the proposed AIEKF is able to provide an accurate estimation.展开更多
In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated...In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.展开更多
This paper is concerned with finite-time H_(∞) filtering for Markov jump systems with uniform quantization. The objective is to design quantized mode-dependent filters to ensure that the filtering error system is not...This paper is concerned with finite-time H_(∞) filtering for Markov jump systems with uniform quantization. The objective is to design quantized mode-dependent filters to ensure that the filtering error system is not only mean-square finite-time bounded but also has a prescribed finite-time H_(∞) performance. First, the case where the switching modes of the filter align with those of the MJS is considered. A numerically tractable filter design approach is proposed utilizing a mode-dependent Lyapunov function, Schur’s complement, and Dynkin’s formula. Then, the study is extended to a scenario where the switching modes of the filter can differ from those of the MJS. To address this situation, a mode-mismatched filter design approach is developed by leveraging a hidden Markov model to describe the asynchronous mode switching and the double expectation formula. Finally, a spring system model subject to a Markov chain is employed to validate the effectiveness of the quantized filter design approaches.展开更多
Vehicle state and tire-road adhesion are of great use and importance to vehicle active safety control systems. However, it is always not easy to obtain the information with high accuracy and low expense. Recently, man...Vehicle state and tire-road adhesion are of great use and importance to vehicle active safety control systems. However, it is always not easy to obtain the information with high accuracy and low expense. Recently, many estimation methods have been put forward to solve such problems, in which Kalman filter becomes one of the most popular techniques. Nevertheless, the use of complicated model always leads to poor real-time estimation while the role of road friction coefficient is often ignored. For the purpose of enhancing the real time performance of the algorithm and pursuing precise estimation of vehicle states, a model-based estimator is proposed to conduct combined estimation of vehicle states and road friction coefficients. The estimator is designed based on a three-DOF vehicle model coupled with the Highway Safety Research Institute(HSRI) tire model; the dual extended Kalman filter (DEKF) technique is employed, which can be regarded as two extended Kalman filters operating and communicating simultaneously. Effectiveness of the estimation is firstly examined by comparing the outputs of the estimator with the responses of the vehicle model in CarSim under three typical road adhesion conditions(high-friction, low-friction, and joint-friction). On this basis, driving simulator experiments are carried out to further investigate the practical application of the estimator. Numerical results from CarSim and driving simulator both demonstrate that the estimator designed is capable of estimating the vehicle states and road friction coefficient with reasonable accuracy. The DEKF-based estimator proposed provides the essential information for the vehicle active control system with low expense and decent precision, and offers the possibility of real car application in future.展开更多
The traditional methods of weak harmonic signal detection under strong chaotic interference often suffer from high computational complexity and poor performance. In this paper, an Extended Kalman Filter (EKF) based de...The traditional methods of weak harmonic signal detection under strong chaotic interference often suffer from high computational complexity and poor performance. In this paper, an Extended Kalman Filter (EKF) based detection method is proposed for the detection of weak harmonic signal. The EKF method avoids matrix inversion by iterating measurement equation and state equation, which simultaneously improves the robustness and reduces the complexity. Compared with the existing detection methods, the proposed method has the following advantages: 1) it has better performance than the neural network method;2) it has similar performance with the optimal filtering method, but with lower computational complexity;3) it is more robust compared with the optimal filtering method.展开更多
The Extended Kalman Filter(EKF)has received abundant attention with the growing demands for robotic localization.The EKF algorithm is more realistic in non-linear systems,which has an autonomous white noise in both th...The Extended Kalman Filter(EKF)has received abundant attention with the growing demands for robotic localization.The EKF algorithm is more realistic in non-linear systems,which has an autonomous white noise in both the system and the estimation model.Also,in the field of engineering,most systems are non-linear.Therefore,the EKF attracts more attention than the Kalman Filter(KF).In this paper,we propose an EKF-based localization algorithm by edge computing,and a mobile robot is used to update its location concerning the landmark.This localization algorithm aims to achieve a high level of accuracy and wider coverage.The proposed algorithm is helpful for the research related to the use of EKF localization algorithms.Simulation results demonstrate that,under the situations presented in the paper,the proposed localization algorithm is more accurate compared with the current state-of-the-art localization algorithms.展开更多
In this paper,we propose an approach for diagnostics and prognostics of damaged aircraft structures,by combing high-performance fatigue mechanics with filtering theories.Fast&accurate deterministic analyses of fat...In this paper,we propose an approach for diagnostics and prognostics of damaged aircraft structures,by combing high-performance fatigue mechanics with filtering theories.Fast&accurate deterministic analyses of fatigue crack propagations are carried out,by using the Finite Element Alternating Method(FEAM)for computing SIFs,and by using the newly developed Moving Least Squares(MLS)law for computing fatigue crack growth rates.Such algorithms for simulating fatigue crack propagations are embedded in the computer program Safe-Flaw,which is called upon as a subroutine within the probabilistic framework of filter theories.Both the extended Kalman as well as particle filters are applied in this study,to obtain the statistically optimal and semi-optimal estimates of crack lengths,from a series of noisy measurements of crack-lengths over time.For the specific problem,a simple modification to the particle filter,which can drastically reduce the computational burden,is also proposed.Based on the results of such diagnostic analyses,the prognostics of aerospace structures are thereafter achieved,to estimate the probabilistic distribution of the remaining useful life.By using a simple example of a single-crack near a fastener hole,we demonstrate the concept and effectiveness of the proposed framework.This paper thus forms the scientific foundation for the recently proposed concepts of VRAMS(Virtual Risk-Informed Agile Maneuver Sustainment)and Digital Twins of aerospace vehicles.展开更多
This article considers delay dependent decentralized H∞ filtering for a class of uncertain interconnected systems, where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions. First...This article considers delay dependent decentralized H∞ filtering for a class of uncertain interconnected systems, where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions. First, combining the Lyapunov-Krasovskii functional approach and the delay integral inequality of matrices, a sufficient condition of the existence of the robust decentralized H∞ filter is derived, which makes the error systems asymptotically stable and satisfies the H∞ norm of the transfer function from noise input to error output less than the specified up-bound on the basis of the form of uncertainties. Then, the above sufficient condition is transformed to a system of easily solvable LMIs via a series of equivalent transformation. Finally, the numerical simulation shows the efficiency of the main results.展开更多
The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the all...The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the allowable range,the state of CO2 removal system needs to be estimated in real time.In this paper,the mathematical model is firstly established that describes the actual system conditions and then the Galerkin-based extended Kalman filter algorithm is proposed for the estimation of the state of CO2.This method transforms partial differential equation to ordinary differential equation by using Galerkin approaching method,and then carries out the state estimation by using extended Kalman filter.Simulation experiments were performed with the qualification of the actual manned space mission.The simulation results show that the proposed method can effectively estimate the system state while avoiding the problem of dimensional explosion,and has strong robustness regarding measurement noise.Thus,this method can establish a basis for system fault diagnosis and fault positioning.展开更多
For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mi...For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.展开更多
The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensure...The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.展开更多
This paper is concerned with the non-fragile H∞ filter design problem for uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delay. To begin with, the T-S fuzzy system is transformed to an equivale...This paper is concerned with the non-fragile H∞ filter design problem for uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delay. To begin with, the T-S fuzzy system is transformed to an equivalent switching fuzzy system. Then, based on the piecewise Lyapunov function and matrix decoupling technique, a new delay-dependent non-fragile H∞ filtering method is proposed for the switching fuzzy system. The proposed condition is less conservative than the previous results. Since only a set of LMIs is involved, the filter parameters can be solved directly. Finally, a design example is provided to illustrate the validity of the proposed method.展开更多
基金funded by the Wenhai Program of the ST Fund of Laoshan Laboratory (No.202204803)the National Natural Science Foundation of China (Nos.42074138,42206195)+1 种基金the National Key R&D Program of China (No.2022YFC2803501)the Research Project of the China National Petroleum Corporation (No.2021ZG02)。
文摘The paper develops a multiple matching attenuation method based on extended filtering in the curvelet domain,which combines the traditional Wiener filtering method with the matching attenuation method in curvelet domain.Firstly,the method uses the predicted multiple data to generate the Hilbert transform records,time derivative records and time derivative records of Hilbert transform.Then,the above records are transformed into the curvelet domain and multiple matching attenuation based on least squares extended filtering is performed.Finally,the attenuation results are transformed back into the time-space domain.Tests on the model data and field data show that the method proposed in the paper effectively suppress the multiples while preserving the primaries well.Furthermore,it has higher accuracy in eliminating multiple reflections,which is more suitable for the multiple attenuation tasks in the areas with complex structures compared to the time-space domain extended filtering method and the conventional curvelet transform method.
基金supported by National Natural Science Foundation of China (Nos.62265010,62061024)Gansu Province Science and Technology Plan (No.23YFGA0062)Gansu Province Innovation Fund (No.2022A-215)。
文摘A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.
文摘It is necessary to know the status of adhesion conditions between wheel and rail for efficient accelerating and decelerating of railroad vehicle.The proper estimation of adhesion conditions and their real-time implementation is considered a challenge for scholars.In this paper,the development of simulation model of extended Kalman filter(EKF)in MATLAB/Simulink is presented to estimate various railway wheelset parameters in different contact conditions of track.Due to concurrent in nature,the Xilinx®System-on-Chip Zynq Field Programmable Gate Array(FPGA)device is chosen to check the onboard estimation ofwheel-rail interaction parameters by using the National Instruments(NI)myRIO®development board.The NImyRIO®development board is flexible to deal with nonlinearities,uncertain changes,and fastchanging dynamics in real-time occurring in wheel-rail contact conditions during vehicle operation.The simulated dataset of the railway nonlinear wheelsetmodel is tested on FPGA-based EKF with different track conditions and with accelerating and decelerating operations of the vehicle.The proposed model-based estimation of railway wheelset parameters is synthesized on FPGA and its simulation is carried out for functional verification on FPGA.The obtained simulation results are aligned with the simulation results obtained through MATLAB.To the best of our knowledge,this is the first time study that presents the implementation of a model-based estimation of railway wheelset parameters on FPGA and its functional verification.The functional behavior of the FPGA-based estimator shows that these results are the addition of current knowledge in the field of the railway.
基金supported by the Ministry of Science and Technology,Taiwan(Grant Number MOST 110-2221-E-019-042).
文摘The goal of this work is to provide an understanding of estimation technology for both linear and nonlinear dynamical systems.A critical analysis of both the Kalman filter(KF)and the extended Kalman filter(EKF)will be provided,along with examples to illustrate some important issues related to filtering convergence due to system modeling.A conceptual explanation of the topic with illustrative examples provided in the paper can help the readers capture the essential principles and avoid making mistakes while implementing the algorithms.Adding fictitious process noise to the system model assumed by the filter designers for convergence assurance is being investigated.A comparison of estimation accuracy with linear and nonlinear measurements is made.Parameter identification by the state estimation method through the augmentation of the state vector is also discussed.The intended readers of this article may include researchers,working engineers,or engineering students.This article can serve as a better understanding of the topic as well as a further connection to probability,stochastic process,and system theory.The lesson learned enables the readers to interpret the theory and algorithms appropriately and precisely implement the computer codes that nicely match the estimation algorithms related to the mathematical equations.This is especially helpful for those readers with less experience or background in optimal estimation theory,as it provides a solid foundation for further study on the theory and applications of the topic.
基金Project supported by the National Natural Science Foundation of China (Grant No.60572157), and the National High- Technology Research and Development Program of China (Grant No.2003AA123310)
文摘A space-time coded multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system is considered as a solution to the future wideband wireless communication system. This paper proposes an extended Kalman filtering-based (EKF-based) channel estimation method for space-time coded MIMO-OFDM systems. The proposed method can exploit pilot symbols and an extended Kalman filter to estimate channel without any prior knowledge of channel statistics. In comparison with the least square (LS) and the least mean square (LMS) methods, the EKF-based approach has a better performance in theory. Computer simulations demonstrate the proposed method outperforms the LS and LMS methods. Therefore it can offer draznatic system performance improvement at a modest cost of computational complexity.
基金supported by the National Natural Science Foundation of China(4166109261461011)the Natural Science Foundation of Guangxi Province(2014GXNSFBA118273)
文摘This paper proposes a new multi-baseline extended particle filtering phase unwrapping algorithm which combines an extended particle filter with an amended matrix pencil model and a quantized path-following strategy. The contributions to multibaseline synthetic aperture radar(SAR) interferometry are as follows: a new recursive multi-baseline phase unwrapping model based on an extended particle filter is built, and the amended matrix pencil model is used to acquire phase gradient information with a higher precision and lower computational cost, and the quantized path-following strategy is introduced to guide the proposed phase unwrapping procedure to efficiently unwrap wrapped phase image along the paths routed by a phase derivative variance map.
文摘A multisensor distributed extended Kalman filtering algorithm is presented for nonlinear system, in which the dynamic equation of the system and the equations of sensor’s measurements are linearized in the global estimate and global prediction respectively and the suboptimal global estimate based on all available information can be reconstructed from the estimates computed by local sensors based solely on their own local information and transmitted to the data fusion center. An analysis of the properties of the algorithm presented here shows that the global estimate has higher precision than the local one and smaller linearization error than the existing method. Finally, an application of the algorithm to radar/IR tracking of a maneuvering target is illustrated. Simulation results show the effectiveness of the algorithm.
文摘Nonlinear estimation problem is investigated in this paper. By extension of a linear H_∞estimation with corrector-predictor form to nonlinear cases, a new extended H_∞filter is proposed for time-varying discrete-time nonlinear systems. The new filter has a simple observer structure based on a local linearization model, and can be viewed as a general case of the extended Kalman filter (EKF). An example demonstrates that the new filter with a suitable-chosen prescribed H_∞bound performs better than the EKF.
基金supported in part by the Shandong Natural Science Foundation under Grant ZR2020MF067.
文摘To provide stable and accurate position information of control points in a complex coastal environment,an adaptive iterated extended Kalman filter(AIEKF)for fixed-point positioning integrating global navigation satellite system,inertial navigation system,and ultra wide band(UWB)is proposed.In thismethod,the switched global navigation satellite system(GNSS)and UWB measurement are used as the measurement of the proposed filter.For the data fusion filter,the expectation-maximization(EM)based IEKF is used as the forward filter,then,the Rauch-Tung-Striebel smoother for IEKF filter’s result smoothing.Tests illustrate that the proposed AIEKF is able to provide an accurate estimation.
文摘In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.
基金Project supported by the Natural Science Foundation of the Anhui Higher Education Institutions (Grant Nos. KJ2020A0248 and 2022AH050310)。
文摘This paper is concerned with finite-time H_(∞) filtering for Markov jump systems with uniform quantization. The objective is to design quantized mode-dependent filters to ensure that the filtering error system is not only mean-square finite-time bounded but also has a prescribed finite-time H_(∞) performance. First, the case where the switching modes of the filter align with those of the MJS is considered. A numerically tractable filter design approach is proposed utilizing a mode-dependent Lyapunov function, Schur’s complement, and Dynkin’s formula. Then, the study is extended to a scenario where the switching modes of the filter can differ from those of the MJS. To address this situation, a mode-mismatched filter design approach is developed by leveraging a hidden Markov model to describe the asynchronous mode switching and the double expectation formula. Finally, a spring system model subject to a Markov chain is employed to validate the effectiveness of the quantized filter design approaches.
基金supported by National Natural Science Foundation of China(Grant Nos. 51075176, 51105165)
文摘Vehicle state and tire-road adhesion are of great use and importance to vehicle active safety control systems. However, it is always not easy to obtain the information with high accuracy and low expense. Recently, many estimation methods have been put forward to solve such problems, in which Kalman filter becomes one of the most popular techniques. Nevertheless, the use of complicated model always leads to poor real-time estimation while the role of road friction coefficient is often ignored. For the purpose of enhancing the real time performance of the algorithm and pursuing precise estimation of vehicle states, a model-based estimator is proposed to conduct combined estimation of vehicle states and road friction coefficients. The estimator is designed based on a three-DOF vehicle model coupled with the Highway Safety Research Institute(HSRI) tire model; the dual extended Kalman filter (DEKF) technique is employed, which can be regarded as two extended Kalman filters operating and communicating simultaneously. Effectiveness of the estimation is firstly examined by comparing the outputs of the estimator with the responses of the vehicle model in CarSim under three typical road adhesion conditions(high-friction, low-friction, and joint-friction). On this basis, driving simulator experiments are carried out to further investigate the practical application of the estimator. Numerical results from CarSim and driving simulator both demonstrate that the estimator designed is capable of estimating the vehicle states and road friction coefficient with reasonable accuracy. The DEKF-based estimator proposed provides the essential information for the vehicle active control system with low expense and decent precision, and offers the possibility of real car application in future.
基金the National Natural Science Foundation of China (Grant No. 61871102 and 61731006)Sichuan province science and technology support program under Grant N0. 2017GZ0345.
文摘The traditional methods of weak harmonic signal detection under strong chaotic interference often suffer from high computational complexity and poor performance. In this paper, an Extended Kalman Filter (EKF) based detection method is proposed for the detection of weak harmonic signal. The EKF method avoids matrix inversion by iterating measurement equation and state equation, which simultaneously improves the robustness and reduces the complexity. Compared with the existing detection methods, the proposed method has the following advantages: 1) it has better performance than the neural network method;2) it has similar performance with the optimal filtering method, but with lower computational complexity;3) it is more robust compared with the optimal filtering method.
基金The work of J.-H.Lee was supported by the Cross-Ministry Giga KOREA Project grant funded by the Korea Government(MSIT)(No.GK20P0400,Development of Mobile Edge Computing Platform Technology for URLLC Services).
文摘The Extended Kalman Filter(EKF)has received abundant attention with the growing demands for robotic localization.The EKF algorithm is more realistic in non-linear systems,which has an autonomous white noise in both the system and the estimation model.Also,in the field of engineering,most systems are non-linear.Therefore,the EKF attracts more attention than the Kalman Filter(KF).In this paper,we propose an EKF-based localization algorithm by edge computing,and a mobile robot is used to update its location concerning the landmark.This localization algorithm aims to achieve a high level of accuracy and wider coverage.The proposed algorithm is helpful for the research related to the use of EKF localization algorithms.Simulation results demonstrate that,under the situations presented in the paper,the proposed localization algorithm is more accurate compared with the current state-of-the-art localization algorithms.
文摘In this paper,we propose an approach for diagnostics and prognostics of damaged aircraft structures,by combing high-performance fatigue mechanics with filtering theories.Fast&accurate deterministic analyses of fatigue crack propagations are carried out,by using the Finite Element Alternating Method(FEAM)for computing SIFs,and by using the newly developed Moving Least Squares(MLS)law for computing fatigue crack growth rates.Such algorithms for simulating fatigue crack propagations are embedded in the computer program Safe-Flaw,which is called upon as a subroutine within the probabilistic framework of filter theories.Both the extended Kalman as well as particle filters are applied in this study,to obtain the statistically optimal and semi-optimal estimates of crack lengths,from a series of noisy measurements of crack-lengths over time.For the specific problem,a simple modification to the particle filter,which can drastically reduce the computational burden,is also proposed.Based on the results of such diagnostic analyses,the prognostics of aerospace structures are thereafter achieved,to estimate the probabilistic distribution of the remaining useful life.By using a simple example of a single-crack near a fastener hole,we demonstrate the concept and effectiveness of the proposed framework.This paper thus forms the scientific foundation for the recently proposed concepts of VRAMS(Virtual Risk-Informed Agile Maneuver Sustainment)and Digital Twins of aerospace vehicles.
基金the National Natural Science Foundation of China (60634020)the Hunan Provincial Natural Science Foundation of China (07JJ6138)+1 种基金the Postdoctoral Science Foundation of China (20060390883)the China Ph.D. Discipline Special Foundation (20050533028).
文摘This article considers delay dependent decentralized H∞ filtering for a class of uncertain interconnected systems, where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions. First, combining the Lyapunov-Krasovskii functional approach and the delay integral inequality of matrices, a sufficient condition of the existence of the robust decentralized H∞ filter is derived, which makes the error systems asymptotically stable and satisfies the H∞ norm of the transfer function from noise input to error output less than the specified up-bound on the basis of the form of uncertainties. Then, the above sufficient condition is transformed to a system of easily solvable LMIs via a series of equivalent transformation. Finally, the numerical simulation shows the efficiency of the main results.
基金Project(050403)supported by Pre-research Project in the Manned Space Filed of China。
文摘The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the allowable range,the state of CO2 removal system needs to be estimated in real time.In this paper,the mathematical model is firstly established that describes the actual system conditions and then the Galerkin-based extended Kalman filter algorithm is proposed for the estimation of the state of CO2.This method transforms partial differential equation to ordinary differential equation by using Galerkin approaching method,and then carries out the state estimation by using extended Kalman filter.Simulation experiments were performed with the qualification of the actual manned space mission.The simulation results show that the proposed method can effectively estimate the system state while avoiding the problem of dimensional explosion,and has strong robustness regarding measurement noise.Thus,this method can establish a basis for system fault diagnosis and fault positioning.
文摘For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.
文摘The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.
基金supported by National Natural Science Foundation of China(No.60974139,No.60804021)Fundamental Research Funds for the Central Universities
文摘This paper is concerned with the non-fragile H∞ filter design problem for uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delay. To begin with, the T-S fuzzy system is transformed to an equivalent switching fuzzy system. Then, based on the piecewise Lyapunov function and matrix decoupling technique, a new delay-dependent non-fragile H∞ filtering method is proposed for the switching fuzzy system. The proposed condition is less conservative than the previous results. Since only a set of LMIs is involved, the filter parameters can be solved directly. Finally, a design example is provided to illustrate the validity of the proposed method.