期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Solution of Algebraic Lyapunov Equation on Positive-Definite Hermitian Matrices by Using Extended Hamiltonian Algorithm 被引量:1
1
作者 Muhammad Shoaib Arif Mairaj Bibi Adnan Jhangir 《Computers, Materials & Continua》 SCIE EI 2018年第2期181-195,共15页
This communique is opted to study the approximate solution of the Algebraic Lyapunov equation on the manifold of positive-definite Hermitian matrices.We choose the geodesic distance between􀀀AHX􀀀XA an... This communique is opted to study the approximate solution of the Algebraic Lyapunov equation on the manifold of positive-definite Hermitian matrices.We choose the geodesic distance between􀀀AHX􀀀XA and P as the cost function,and put forward the Extended Hamiltonian algorithm(EHA)and Natural gradient algorithm(NGA)for the solution.Finally,several numerical experiments give you an idea about the effectiveness of the proposed algorithms.We also show the comparison between these two algorithms EHA and NGA.Obtained results are provided and analyzed graphically.We also conclude that the extended Hamiltonian algorithm has better convergence speed than the natural gradient algorithm,whereas the trajectory of the solution matrix is optimal in case of Natural gradient algorithm(NGA)as compared to Extended Hamiltonian Algorithm(EHA).The aim of this paper is to show that the Extended Hamiltonian algorithm(EHA)has superior convergence properties as compared to Natural gradient algorithm(NGA).Upto the best of author’s knowledge,no approximate solution of the Algebraic Lyapunov equation on the manifold of positive-definite Hermitian matrices is found so far in the literature. 展开更多
关键词 Information geometry algebraic lyapunov equation positive-definite hermitianmatrix manifold natural gradient algorithm extended hamiltonian algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部