Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamic...Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.展开更多
Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions be...Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.展开更多
With Hirota's bilinear direct method, we study the special coupled KdV system to obtain its new soliton solutions. Then we further discuss soliton evolution, corresponding structures, and interesting interactive phen...With Hirota's bilinear direct method, we study the special coupled KdV system to obtain its new soliton solutions. Then we further discuss soliton evolution, corresponding structures, and interesting interactive phenomena in detail with plot. As a result, we find that after the interaction, the solitons make elastic collision and there are no exchanges of their physical quantities including energy, velocity and shape except the phase shift.展开更多
This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton)...This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.展开更多
We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide soli...We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.展开更多
This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we p...This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we prove the painlevé non integrability of the equation. Secondly, A new breather solution and lump type solution are obtained based on the parameter limit method and Hirota’s bilinear method. Besides, some interaction behavior between lump type solution and N-soliton solutions (N is any positive integer) are studied. We construct the existence theorem of the interaction solution and give the process of calculation and proof. We also give a concrete example to illustrate the effectiveness of the theorem, and some spatial structure figures are displayed to reflect the evolutionary behavior of the interaction solutions with the change of soliton number N and time t.展开更多
The mixed AKNS nonlinear evolution equation in equation, which contains an isospectral term the AKNS system. So searching for its exact and a nonisospectral term, is an important solutions is vital both for the AKNS s...The mixed AKNS nonlinear evolution equation in equation, which contains an isospectral term the AKNS system. So searching for its exact and a nonisospectral term, is an important solutions is vital both for the AKNS system and in mathematical sense. In this paper, the corresponding Lax pair was given, the bilinear forms of the mixed AKNS equation were obtained through introducing the transformation of dependent variables. By using Hirota's bilinear method, the N-soliton solutions were obtained.展开更多
Hirota's bilinear direct method is applied to constructing soliton solutions to a special coupled modified Korteweg- de Vries (mKdV) system. Some physical properties such as the spatiotemporal evolution, waveform s...Hirota's bilinear direct method is applied to constructing soliton solutions to a special coupled modified Korteweg- de Vries (mKdV) system. Some physical properties such as the spatiotemporal evolution, waveform structure, interactive phenomena of solitons are discussed, especially in the two-soliton case. It is found that different interactive behaviours of solitary waves take place under different parameter conditions of overtaking collision in this system. It is verified that the elastic interaction phenomena exist in this (1+1)-dimensional integrable coupled model.展开更多
Periodic solitons are studied in dispersion decreasing fibers with a cosine profile. The variable-coefficient nonlinear Schrrdinger equation, which can be used to describe the propagation of solitons, is investigated ...Periodic solitons are studied in dispersion decreasing fibers with a cosine profile. The variable-coefficient nonlinear Schrrdinger equation, which can be used to describe the propagation of solitons, is investigated analytically. Analytic soli- ton solutions for this equation are derived with the Hirota's bilinear method. Using the soliton solutions, we obtain periodic solitons, and analyze the soliton characteristics. Influences of physical parameters on periodic solitons are discussed. The presented results can be used in optical communication systems and fiber lasers.展开更多
In this paper,the bidirectional SK-Ramani equation is investigated by means of the extended homoclinic test approach and Riemann theta function method,respectively.Based on the Hirota bilinear method,exact solutions i...In this paper,the bidirectional SK-Ramani equation is investigated by means of the extended homoclinic test approach and Riemann theta function method,respectively.Based on the Hirota bilinear method,exact solutions including one-soliton wave solution are obtained by using the extended homoclinic approach and one-periodic wave solution is constructed by using the Riemann theta function method.A limiting procedure is presented to analyze in detail the relations between the one periodic wave solution and one-soliton solution.展开更多
Using the Hirota's bilinear method,some new N-soliton solution are presented for two multidimensional analogues of the m-KdV equation wt+wxxx-6w 2 wx+3 2( w x -1 wy+w-x -1 wz)x=0 and wt+wxxx?6w 2 wx+3 2( wwy+wx-x-...Using the Hirota's bilinear method,some new N-soliton solution are presented for two multidimensional analogues of the m-KdV equation wt+wxxx-6w 2 wx+3 2( w x -1 wy+w-x -1 wz)x=0 and wt+wxxx?6w 2 wx+3 2( wwy+wx-x-1 wy)=0 in view of a different treatment.展开更多
In this paper, we investigate the Gross-Pitaevskii (GP) equation which describes the propagation of an electron plasma wave packet with a large wavelength and small amplitude in a medium with a parabolic density and c...In this paper, we investigate the Gross-Pitaevskii (GP) equation which describes the propagation of an electron plasma wave packet with a large wavelength and small amplitude in a medium with a parabolic density and constant interactional damping by the Covariant Prolongation Structure Theory. As a result, we obtain general forms of Lax-Pair representations. In addition, some hidden structural symmetries that govern the dynamics of the GP equation such as SL(2,R), SL(2,C), Virasoro algebra, SU(1,1) and SU(2) are unearthed. Using the Riccati form of the linear eigenvalue problem, infinite number of conservation laws of the GP equation is explicitly constructed and the exact analytical soliton solutions are obtained by employing the simple and straightforward Hirota’s bilinear method.展开更多
In this paper, several kinds of lump solutions for the (1 + 1)-dimensional Ito-equation are introduced. The proposed method in this work is based on a Hirota bilinear differential equation. The form of the solutions t...In this paper, several kinds of lump solutions for the (1 + 1)-dimensional Ito-equation are introduced. The proposed method in this work is based on a Hirota bilinear differential equation. The form of the solutions to the equation is constructed and the solutions are improved through analysis and symbolic computations with Maple. Finally, figure of the solution is made for specific examples for the lump solutions.展开更多
Based on the method of Hirota's bilinear derivative transform, the derivative nonlinear Schrodinger equation with vanishing boundary condition has been directly solved. The oneand two-soliton solutions are given as t...Based on the method of Hirota's bilinear derivative transform, the derivative nonlinear Schrodinger equation with vanishing boundary condition has been directly solved. The oneand two-soliton solutions are given as two typical examples in the illustration of the general procedures and the concrete cut-off technique of the series-form solution, and the n-soliton solution is also attained by induction method. Our study shows their equivalence to the existing soliton solutions by a simple parameter transformation. The methodological importance of bilinear derivative transform in dealing with an integrable nonlinear equation has also been emphasized. The evolution of one and two-soliton solution with respect to time and space has been discussed in detail. The collision among the solitons has been manifested through an example of two-soliton case, revealing the elastic essence of the collision and the invariance of the soliton form and characteristics.展开更多
A new(2+1)-dimensional higher-order extended asymmetric Nizhnik-Novikov-Veselov(eANNV)equation is proposed by introducing the additional bilinear terms to the usual ANNV equation.Based on the independent transformatio...A new(2+1)-dimensional higher-order extended asymmetric Nizhnik-Novikov-Veselov(eANNV)equation is proposed by introducing the additional bilinear terms to the usual ANNV equation.Based on the independent transformation,the bilinear form of the eANNV equation is constructed.The lump wave is guaranteed by introducing a positive constant term in the quadratic function.Meanwhile,different class solutions of the eANNV equation are obtained by mixing the quadratic function with the exponential functions.For the interaction between the lump wave and one-soliton,the energy of the lump wave and one-soliton can transfer to each other at different times.The interaction between a lump and two-soliton can be obtained only by eliminating the sixth-order bilinear term.The dynamics of these solutions are illustrated by selecting the specific parameters in three-dimensional,contour and density plots.展开更多
基金Supported by the National Natural Science Foundation of China(12275172)。
文摘Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.
文摘Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.
文摘With Hirota's bilinear direct method, we study the special coupled KdV system to obtain its new soliton solutions. Then we further discuss soliton evolution, corresponding structures, and interesting interactive phenomena in detail with plot. As a result, we find that after the interaction, the solitons make elastic collision and there are no exchanges of their physical quantities including energy, velocity and shape except the phase shift.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10871117 and 10571110)
文摘This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11671219 and 11871446)
文摘We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.
文摘This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we prove the painlevé non integrability of the equation. Secondly, A new breather solution and lump type solution are obtained based on the parameter limit method and Hirota’s bilinear method. Besides, some interaction behavior between lump type solution and N-soliton solutions (N is any positive integer) are studied. We construct the existence theorem of the interaction solution and give the process of calculation and proof. We also give a concrete example to illustrate the effectiveness of the theorem, and some spatial structure figures are displayed to reflect the evolutionary behavior of the interaction solutions with the change of soliton number N and time t.
基金Project supported by the National Natural Science Foundation of China (Grant No.40175014)
文摘The mixed AKNS nonlinear evolution equation in equation, which contains an isospectral term the AKNS system. So searching for its exact and a nonisospectral term, is an important solutions is vital both for the AKNS system and in mathematical sense. In this paper, the corresponding Lax pair was given, the bilinear forms of the mixed AKNS equation were obtained through introducing the transformation of dependent variables. By using Hirota's bilinear method, the N-soliton solutions were obtained.
文摘Hirota's bilinear direct method is applied to constructing soliton solutions to a special coupled modified Korteweg- de Vries (mKdV) system. Some physical properties such as the spatiotemporal evolution, waveform structure, interactive phenomena of solitons are discussed, especially in the two-soliton case. It is found that different interactive behaviours of solitary waves take place under different parameter conditions of overtaking collision in this system. It is verified that the elastic interaction phenomena exist in this (1+1)-dimensional integrable coupled model.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61205064,51272202,and 61234006)the Visiting Scholar Funds of the Key Laboratory of Optoelectronic Technology and Systems of Chongqing University(Grant No.0902011812401 5)
文摘Periodic solitons are studied in dispersion decreasing fibers with a cosine profile. The variable-coefficient nonlinear Schrrdinger equation, which can be used to describe the propagation of solitons, is investigated analytically. Analytic soli- ton solutions for this equation are derived with the Hirota's bilinear method. Using the soliton solutions, we obtain periodic solitons, and analyze the soliton characteristics. Influences of physical parameters on periodic solitons are discussed. The presented results can be used in optical communication systems and fiber lasers.
文摘In this paper,the bidirectional SK-Ramani equation is investigated by means of the extended homoclinic test approach and Riemann theta function method,respectively.Based on the Hirota bilinear method,exact solutions including one-soliton wave solution are obtained by using the extended homoclinic approach and one-periodic wave solution is constructed by using the Riemann theta function method.A limiting procedure is presented to analyze in detail the relations between the one periodic wave solution and one-soliton solution.
基金Supported by the National Natural Science Foundation of China(10871132 11074160) Supported by the National Natura Science Foundation of Henan Province(102300410190 092300410202)
文摘Using the Hirota's bilinear method,some new N-soliton solution are presented for two multidimensional analogues of the m-KdV equation wt+wxxx-6w 2 wx+3 2( w x -1 wy+w-x -1 wz)x=0 and wt+wxxx?6w 2 wx+3 2( wwy+wx-x-1 wy)=0 in view of a different treatment.
文摘In this paper, we investigate the Gross-Pitaevskii (GP) equation which describes the propagation of an electron plasma wave packet with a large wavelength and small amplitude in a medium with a parabolic density and constant interactional damping by the Covariant Prolongation Structure Theory. As a result, we obtain general forms of Lax-Pair representations. In addition, some hidden structural symmetries that govern the dynamics of the GP equation such as SL(2,R), SL(2,C), Virasoro algebra, SU(1,1) and SU(2) are unearthed. Using the Riccati form of the linear eigenvalue problem, infinite number of conservation laws of the GP equation is explicitly constructed and the exact analytical soliton solutions are obtained by employing the simple and straightforward Hirota’s bilinear method.
文摘In this paper, several kinds of lump solutions for the (1 + 1)-dimensional Ito-equation are introduced. The proposed method in this work is based on a Hirota bilinear differential equation. The form of the solutions to the equation is constructed and the solutions are improved through analysis and symbolic computations with Maple. Finally, figure of the solution is made for specific examples for the lump solutions.
基金Supported by the National Natural Science Foundation of China (10775105)
文摘Based on the method of Hirota's bilinear derivative transform, the derivative nonlinear Schrodinger equation with vanishing boundary condition has been directly solved. The oneand two-soliton solutions are given as two typical examples in the illustration of the general procedures and the concrete cut-off technique of the series-form solution, and the n-soliton solution is also attained by induction method. Our study shows their equivalence to the existing soliton solutions by a simple parameter transformation. The methodological importance of bilinear derivative transform in dealing with an integrable nonlinear equation has also been emphasized. The evolution of one and two-soliton solution with respect to time and space has been discussed in detail. The collision among the solitons has been manifested through an example of two-soliton case, revealing the elastic essence of the collision and the invariance of the soliton form and characteristics.
基金supported by the National Natural Science Foundation of China Nos.11775146 and 12105243the Natural Science Foundation of Zhejiang Province of China Grant No.LQ22A050002。
文摘A new(2+1)-dimensional higher-order extended asymmetric Nizhnik-Novikov-Veselov(eANNV)equation is proposed by introducing the additional bilinear terms to the usual ANNV equation.Based on the independent transformation,the bilinear form of the eANNV equation is constructed.The lump wave is guaranteed by introducing a positive constant term in the quadratic function.Meanwhile,different class solutions of the eANNV equation are obtained by mixing the quadratic function with the exponential functions.For the interaction between the lump wave and one-soliton,the energy of the lump wave and one-soliton can transfer to each other at different times.The interaction between a lump and two-soliton can be obtained only by eliminating the sixth-order bilinear term.The dynamics of these solutions are illustrated by selecting the specific parameters in three-dimensional,contour and density plots.