期刊文献+
共找到604篇文章
< 1 2 31 >
每页显示 20 50 100
Unscented extended Kalman filter for target tracking 被引量:21
1
作者 Changyun Liu Penglang Shui Song Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期188-192,共5页
A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman... A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman filter is similar to that in a conventional EKF. However, in every running step of the EKF the unscented transformation is running, the deterministic sample is caught by unscented transformation, then posterior mean of non- lineadty is caught by propagating, but the posterior covariance of nonlinearity is caught by linearizing. The accuracy of new method is a little better than that of the unscented Kalman filter (UKF), however, the computational time of the UEKF is much less than that of the UKF. 展开更多
关键词 unscented transformation (UT) extended Kalman filter (ekf unscented extended Kalman filter (Uekf) unscentedKalman filter (UKF) nonliearity.
下载PDF
The Use of High-Performance Fatigue Mechanics and the Extended Kalman/Particle Filters,for Diagnostics and Prognostics of Aircraft Structures 被引量:4
2
作者 Hai-Kun Wang Robert Haynes +2 位作者 Hong-Zhong Huang Leiting Dong Satya N.Atluri 《Computer Modeling in Engineering & Sciences》 SCIE EI 2015年第5期1-24,共24页
In this paper,we propose an approach for diagnostics and prognostics of damaged aircraft structures,by combing high-performance fatigue mechanics with filtering theories.Fast&accurate deterministic analyses of fat... In this paper,we propose an approach for diagnostics and prognostics of damaged aircraft structures,by combing high-performance fatigue mechanics with filtering theories.Fast&accurate deterministic analyses of fatigue crack propagations are carried out,by using the Finite Element Alternating Method(FEAM)for computing SIFs,and by using the newly developed Moving Least Squares(MLS)law for computing fatigue crack growth rates.Such algorithms for simulating fatigue crack propagations are embedded in the computer program Safe-Flaw,which is called upon as a subroutine within the probabilistic framework of filter theories.Both the extended Kalman as well as particle filters are applied in this study,to obtain the statistically optimal and semi-optimal estimates of crack lengths,from a series of noisy measurements of crack-lengths over time.For the specific problem,a simple modification to the particle filter,which can drastically reduce the computational burden,is also proposed.Based on the results of such diagnostic analyses,the prognostics of aerospace structures are thereafter achieved,to estimate the probabilistic distribution of the remaining useful life.By using a simple example of a single-crack near a fastener hole,we demonstrate the concept and effectiveness of the proposed framework.This paper thus forms the scientific foundation for the recently proposed concepts of VRAMS(Virtual Risk-Informed Agile Maneuver Sustainment)and Digital Twins of aerospace vehicles. 展开更多
关键词 DIAGNOSTICS and PROGNOSTICS FATIGUE MECHANICS extended kalmanfilter particle filter
下载PDF
基于IQPSO-EKF的多传感器融合姿态测量方法研究
3
作者 胡启国 王磊 +1 位作者 马鉴望 任渝荣 《机电工程》 CAS 北大核心 2024年第2期353-363,共11页
为解决自动化竖井掘进设备的定位调姿精度对竖井、孔桩挖掘效率与质量的影响,提出了一种基于改进量子粒子群(IQPSO)-扩展卡尔曼滤波(EKF)的姿态测量算法,以提高微机电系统(MEMS)传感器测量精度。首先,对MEMS传感器数据进行了预处理(除... 为解决自动化竖井掘进设备的定位调姿精度对竖井、孔桩挖掘效率与质量的影响,提出了一种基于改进量子粒子群(IQPSO)-扩展卡尔曼滤波(EKF)的姿态测量算法,以提高微机电系统(MEMS)传感器测量精度。首先,对MEMS传感器数据进行了预处理(除噪、滤波、校准等);然后,参考现有飞行器的坐标系,建立了姿态解算模型,通过姿态角数学模型及运动学分析,构建了EFK状态方程,针对EKF方法参数估计不准确的问题,以分段混沌映射优化初始种群,引入平均位置最优值来避免陷入局部最优的IQPSO-EFK算法,优化EKF的系统、测量噪声的协方差参数;最后,对改进算法和三组姿态误差估计进行了对比实验。研究结果表明:对比三种典型目标函数,IQPSO-EFK相较于普通粒子群算法(QPSO-EFK)具有更强的寻优能力与收敛精度;对比三组旋转速度姿态测量误差,基于IQPSO-EKF算法的姿态测量方法在测量误差时比真实测量误差减少了约86.3%,比扩展卡尔曼滤波减少了约68.7%,比普通粒子群算法减少了约28.2%,证明该算法有效地提高了MEMS传感器测量精度。 展开更多
关键词 竖井掘进 角度测量仪器 姿态测量 微机电系统传感器 多传感器融合 改进量子粒子群-扩展卡尔曼滤波
下载PDF
Modified switched IMM estimator based on autoregressive extended Viterbi method for maneuvering target tracking 被引量:3
4
作者 HADAEGH Mahmoudreza KHALOOZADEH Hamid 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1142-1157,共16页
In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant ac... In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant acceleration(CA) models to noise effect reduction, the autoregressive(AR) part of the new model which changes the structure of state space equations is proposed. Also using a dynamic form of the state transition matrix leads to improving the rate of convergence and decreasing the noise effects. Since AR will impose the load of overmodeling to the computations, the extended Viterbi(EV) method is incorporated to AR in two cases of EV1 and EV2. According to most probable paths in the interacting multiple model(IMM) during nonmaneuvering and maneuvering parts of estimation, EV1 and EV2 respectively can decrease load of overmodeling computations and improve the AR performance. This new method is coupled with proposed detection schemes for maneuver occurrence and termination as well as for switching initializations. Appropriate design parameter values are derived for the detection schemes of maneuver occurrences and terminations. Finally, simulations demonstrate that the performance of the proposed model is better than the other older linear and also nonlinear algorithms in constant velocity motions and also in various types of maneuvers. 展开更多
关键词 interacting multiple model(IMM) filter constant acceleration(CA) autoregressive(AR) extended Viterbi(EV) autoregressive extended Viterbi(AREV) extended Kalman filter(ekf)
下载PDF
Extended Kalman filtering-based channel estimation for space-time coded MIMO-OFDM systems 被引量:5
5
作者 梁永明 罗汉文 黄建国 《Journal of Shanghai University(English Edition)》 CAS 2007年第5期469-473,共5页
A space-time coded multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system is considered as a solution to the future wideband wireless communication system. This paper proposes a... A space-time coded multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system is considered as a solution to the future wideband wireless communication system. This paper proposes an extended Kalman filtering-based (EKF-based) channel estimation method for space-time coded MIMO-OFDM systems. The proposed method can exploit pilot symbols and an extended Kalman filter to estimate channel without any prior knowledge of channel statistics. In comparison with the least square (LS) and the least mean square (LMS) methods, the EKF-based approach has a better performance in theory. Computer simulations demonstrate the proposed method outperforms the LS and LMS methods. Therefore it can offer draznatic system performance improvement at a modest cost of computational complexity. 展开更多
关键词 multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) channel estimation extended Kalman filtering (ekf least mean square (LMS).
下载PDF
Online temperature estimation of Shell coal gasification process based on extended Kalman filter 被引量:2
6
作者 Kangcheng Wang Jie Zhang Dexian Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第7期134-144,共11页
Obtaining the temperature inside the gasifier of a Shell coal gasification process(SCGP)in real-time is very important for safe process operation.However,this temperature cannot be measured directly due to the harsh o... Obtaining the temperature inside the gasifier of a Shell coal gasification process(SCGP)in real-time is very important for safe process operation.However,this temperature cannot be measured directly due to the harsh operating condition.Estimating this temperature using the extended Kalman filter(EKF)based on a simplified mechanistic model is proposed in this paper.The gasifier is partitioned into three zones.The quench pipe and the transfer duct are seen as two additional zones.A simplified mechanistic model is developed in each zone and formulated as a state-space representation.The temperature in each zone is estimated by the EKF in real-time.The proposed method is applied to an industrial SCGP and the effectiveness of the estimated temperatures is verified by a process variable both qualitatively and quan-titatively.The prediction capability of the simplified mechanistic model is validated.The effectiveness of the proposed method is further verified by comparing it to a Kalman filter-based single-zone temperature estimation method. 展开更多
关键词 Shell coalgasificationprocess Mechanistic modeling Temperature estimation extended kalmanfilter
下载PDF
Attitude estimation method based on extended Kalman filter algorithm with 22 dimensional state vector for low-cost agricultural UAV 被引量:1
7
作者 Wu Helong Pei Xinbiao +2 位作者 Li Jihui Gao Huibin Bai Yue 《High Technology Letters》 EI CAS 2020年第2期125-135,共11页
To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is... To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is designed.The coaxial sixteen-rotor UAV’s basic structure and attitude estimation method are explained.The whole system weights 25 kg,cruising speed can reach 15 m/s,and the flight time is more than 20 min.When the UAV takes large load,the traditional extended Kalman filter(EKF)attitude estimation method can not meet the work requirements under the condition of strong vibration,the attitude measure accuracy is poor and the attitude angle divergence is easily caused.Hence an attitude estimation method based on EKF algorithm with 22 dimensional state vector is proposed which can solve these problems.The UAV system consists of STM32F429 as controller,integrating following measure sensors:accelerometer and gyroscope MPU6000,magnetometer LSM303D,GPS NEO-M8N and barometer.The attitude unit quaternion,velocity,position,earth magnetic field,biases error of gyroscope,accelerometer and magnetometer are introduced as the inertial navigation systems(INS)state vector,while magnetometer,global positioning system(GPS)and barometer are introduced as observation vector,thus making the estimate of the navigation information more accurate.The control strategy of coaxial sixteen-rotor UAV is based on the control method of combining active disturbance rejection control(ADRC)and proportion integral derivative(PID)control.Actual flight data are used to verify the algorithm,and the static experiment shows that the precision of roll angle and pitch angle of the algorithm are±0.1°,the precision of yaw angle is±0.2°.The attitude angle output of MTi sensor is used as reference.The dynamic experiment shows that the accuracy of attitude estimated by EKF algorithm is quite similar to that of MTi’s output,moreover,the algorithm has good real-time performance which meets the need of high maneuverability of agricultural UAV. 展开更多
关键词 coaxial sixteen-rotor unmanned AERIAL vehicle(UAV) extended KALMAN filter(ekf) QUATERNION LOW-COST
下载PDF
Maneuvering Target Tracking Algorithm Based on Muti-paramter Sequential Extended Kalman Filter 被引量:2
8
作者 JIA Shuyi SUN Weiwei WANG Guohong 《Journal of Donghua University(English Edition)》 EI CAS 2018年第3期207-214,共8页
Based on the information theory,the performance of maneuvering target tracking can be improved by increasing the input information( observation vector).In this paper,the estimations of radial acceleration and radial v... Based on the information theory,the performance of maneuvering target tracking can be improved by increasing the input information( observation vector).In this paper,the estimations of radial acceleration and radial velocity obtained in the signal processing are introduced into the measurement vector by coordinate transformation.In order to solve the problem of high nonlinearity of the radial acceleration,radial velocity and the state vector,a new algorithm of multi-parameter sequential extended Kalman filter( MSEKF) is proposed.The tracking performance of this algorithm is tested and compared with the other tracking algorithms.It is shown that the proposed algorithm outperforms these algorithms in strong and weak maneuvering environments. 展开更多
关键词 information theory maneuvering target extended Kalman filter(ekf radial acceleration radial velocity
下载PDF
一种基于Madgwick-EKF融合算法的卫星姿态测量方法
9
作者 史炯锴 张松勇 +1 位作者 渐开旺 高迪驹 《上海航天(中英文)》 CSCD 2024年第2期95-103,120,共10页
针对低地球轨道卫星姿态测量时,传感器易受噪声干扰、陀螺仪漂移等问题,提出一种基于Madgwick扩展卡尔曼滤波合算法(EKF)的卫星姿态测量方法。该方法采用陀螺仪、加速度计、磁强计等多传感器数据进行融合,并结合Madgwick算法和EKF算法... 针对低地球轨道卫星姿态测量时,传感器易受噪声干扰、陀螺仪漂移等问题,提出一种基于Madgwick扩展卡尔曼滤波合算法(EKF)的卫星姿态测量方法。该方法采用陀螺仪、加速度计、磁强计等多传感器数据进行融合,并结合Madgwick算法和EKF算法的优点,实现姿态测量。首先,通过Madgwick算法,利用多个传感器测量数据计算初始姿态。然后,基于初始姿态和实际测量数据,应用EKF算法进行数据融合和噪声滤除,以获得最终准确的姿态估计。实验结果表明:相较Madgwick算法,本算法在测量精度上提升了65.8%,且具有较高的鲁棒性,为低地球轨道卫星姿态测量提供了一种有效的方案。 展开更多
关键词 姿态测量 姿态传感器 Madgwick算法 扩展卡尔曼滤波 近地轨道卫星
下载PDF
基于EKF-GRU的车辆轨迹预测
10
作者 张传莹 徐国艳 +3 位作者 陈志发 周彬 陈立伟 洪玮 《中国安全科学学报》 CAS CSCD 北大核心 2024年第6期164-172,共9页
为提升行车安全,实现自动驾驶车辆正确的决策规划,提出基于扩展卡尔曼滤波(EKF)-门控循环单元(GRU)的车辆轨迹预测方法,结合学习方法与物理模型,在提升预测精度的同时,提高轨迹预测的合理性。首先,基于GRU构建预测网络,通过提取车辆的... 为提升行车安全,实现自动驾驶车辆正确的决策规划,提出基于扩展卡尔曼滤波(EKF)-门控循环单元(GRU)的车辆轨迹预测方法,结合学习方法与物理模型,在提升预测精度的同时,提高轨迹预测的合理性。首先,基于GRU构建预测网络,通过提取车辆的历史轨迹特征预测车辆的纵向加速度及横摆角速度;其次,基于车辆非线性运动学构建EKF状态估计器,结合观测值生成车辆未来有限时域的行驶轨迹;最后,在高速公路多车轨迹数据集NGSIM I-80和US-101上进行轨迹预测方法验证。结果表明:采用传统的物理模型生成预测轨迹,其最终距离误差(FDE)、均方根误差(RMSE)、平均距离误差(ADE)值分别为6.48、7.69和3.03 m。相比之下,利用EKF-GRU生成的预测轨迹表现出更高的准确性,对应的数值分别为5.45、6.67和2.56 m,分别提升15.90%、13.26%和15.51%。 展开更多
关键词 扩展卡尔曼滤波(ekf) 门控循环单元(GRU) 车辆轨迹 轨迹预测 NGSIM数据集 神经网络
下载PDF
Time-varying parameters estimation with adaptive neural network EKF for missile-dual control system
11
作者 YUAN Yuqi ZHOU Di +1 位作者 LI Junlong LOU Chaofei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期451-462,共12页
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST... In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model. 展开更多
关键词 long-short-term memory(LSTM)neural network extended Kalman filter(ekf) rolling training time-varying parameters estimation missile dual control system
下载PDF
结合EKF与LSTM神经网络的授时/守时算法
12
作者 徐涛 郭宸宇 赵程 《全球定位系统》 CSCD 2024年第5期126-132,共7页
本文研究了一种在卫星授时下,提高授时信号的授时精度和守时能力方法,即利用晶振计数器,记录下每个秒脉冲时刻的晶振频率信息;将记录历史信息输入到扩展卡尔曼滤波器(extended Kalman filter,EKF)中进行滤波,消除卫星秒脉冲信号的随机误... 本文研究了一种在卫星授时下,提高授时信号的授时精度和守时能力方法,即利用晶振计数器,记录下每个秒脉冲时刻的晶振频率信息;将记录历史信息输入到扩展卡尔曼滤波器(extended Kalman filter,EKF)中进行滤波,消除卫星秒脉冲信号的随机误差,提取北斗卫星前N秒秒脉冲的累计时间t_(CN)、k时刻的晶振频率fre(k)、k时刻晶振变化速率v(k);并将经过EKF输出的历史数据作为训练集,输入到长短期记忆(long short-term memory,LSTM)神经网络中建立预测模型;通过控制变量法进行算法参数调试,找到最适合的预测模型.试验结果表明:授时算法输出的授时信号精度最大误差为34 ns;授时算法8 h累计误差为1.001μs,平均误差小于0.125μs/h.有效地提高了系统授时和守时精度. 展开更多
关键词 扩展卡尔曼滤波(ekf) 长短期记忆网络(LSTM) 时间同步 卫星授时 晶振建模
下载PDF
基于二阶近似EKF的永磁同步电机无传感器控制策略
13
作者 鲁飞 张可可 +1 位作者 龚淼 李宾皑 《微特电机》 2024年第5期65-69,共5页
在永磁同步电机(PMSM)无感控制中,采用扩展卡尔曼滤波(EKF)来估计PMSM的转子位置和转速,采用一阶Taylor展开对系统状态模型进行线性化,省略二阶及以上项会带来较大的建模误差。针对该问题,提出了基于二阶近似的EKF方法,保留二阶偏微分项... 在永磁同步电机(PMSM)无感控制中,采用扩展卡尔曼滤波(EKF)来估计PMSM的转子位置和转速,采用一阶Taylor展开对系统状态模型进行线性化,省略二阶及以上项会带来较大的建模误差。针对该问题,提出了基于二阶近似的EKF方法,保留二阶偏微分项,提高了系统模型精度。仿真实验证明,该方法可以获得比传统方法更精确的估计结果。 展开更多
关键词 永磁同步电机 参数估计 无传感器控制 二阶扩展卡尔曼滤波
下载PDF
基于组合EKF的自主水下航行器SLAM 被引量:19
14
作者 王宏健 王晶 +1 位作者 边信黔 傅桂霞 《机器人》 EI CSCD 北大核心 2012年第1期56-64,共9页
针对标准扩展卡尔曼滤波(EKF)在噪声统计特性不准确、系统模型与实际模型无法完全匹配情况下滤波精度严重下降的问题,提出了一种基于Sage-Husa自适应EKF和强跟踪EKF组合的SLAM(同步定位与地图构建)算法.首先建立了AUV(自主水下航行器)... 针对标准扩展卡尔曼滤波(EKF)在噪声统计特性不准确、系统模型与实际模型无法完全匹配情况下滤波精度严重下降的问题,提出了一种基于Sage-Husa自适应EKF和强跟踪EKF组合的SLAM(同步定位与地图构建)算法.首先建立了AUV(自主水下航行器)的动力学模型、特征模型以及传感器的测量模型,然后通过Hough变换进行特征提取,最终采用组合EKF实现了自主水下航行器的同步定位与地图构建.海试数据仿真试验表明本文所提方法降低了噪声统计特性时变以及模型不精确对系统的影响,提高了SLAM系统的精确性和鲁棒性. 展开更多
关键词 同步定位与地图构建 ekf Sage-Husa自适应ekf 强跟踪ekf 组合ekf
下载PDF
EKF和互补滤波器在飞行姿态确定中的应用 被引量:45
15
作者 郭晓鸿 杨忠 +2 位作者 陈喆 杨成顺 龚华军 《传感器与微系统》 CSCD 北大核心 2011年第11期149-152,共4页
设计了一种旋翼飞行姿态参考系统,采用基于加速度计和陀螺仪的惯性测量组合(IMU)测量飞行姿态数据。采集实测数据并运用Allan方差分析法分析其噪声特性,建立传感器模型;针对旋翼飞行器分别应用经典扩展Kalman滤波(EKF)算法和互补滤波算... 设计了一种旋翼飞行姿态参考系统,采用基于加速度计和陀螺仪的惯性测量组合(IMU)测量飞行姿态数据。采集实测数据并运用Allan方差分析法分析其噪声特性,建立传感器模型;针对旋翼飞行器分别应用经典扩展Kalman滤波(EKF)算法和互补滤波算法进行姿态解算。在详细阐述2种算法的原理与实现的基础上,进行飞行器平台实验验证。研究结果表明2种算法均有效,且互补滤波器相对经典Kal-man滤波器更为简单、有效。 展开更多
关键词 姿态测量 扩展KALMAN滤波器 互补滤波器 ALLAN方差
下载PDF
基于EKF的无轴承异步电机无速度传感器控制 被引量:22
16
作者 杨泽斌 樊荣 +2 位作者 孙晓东 董大伟 朱熀秋 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第5期1023-1030,共8页
为解决无接触、无摩擦无轴承异步电机低成本运行中转速辨识问题,提出了一种基于扩展卡尔曼滤波器的无速度传感器控制方法。该方法分别将电机的端电压和定子电流作为无轴承异步电机状态方程的控制变量和可测变量,并将系统状态方程降阶后... 为解决无接触、无摩擦无轴承异步电机低成本运行中转速辨识问题,提出了一种基于扩展卡尔曼滤波器的无速度传感器控制方法。该方法分别将电机的端电压和定子电流作为无轴承异步电机状态方程的控制变量和可测变量,并将系统状态方程降阶后,经扩展卡尔曼滤波器估计的递推公式得出含有电机转子转速的状态变量,实现转速参量的在线辨识并减少计算量。仿真结果表明:利用该检测方法构造的控制系统不仅能在宽速范围内有效观测转子转速,且具有优良的转速和转矩特性。进一步实验也表明,该控制方法能准确辨识出转速,并将转子径向位移峰-峰值控制在100μm以内稳定悬浮运行,实现了无轴承异步电机无速度传感器方式下的稳定悬浮运行,验证了所提检测方法的正确性与有效性。 展开更多
关键词 扩展卡尔曼滤波器 无速度传感器 无轴承异步电机 矢量控制
下载PDF
基于多新息理论的EKF算法研究 被引量:11
17
作者 吕国宏 秦品乐 +2 位作者 苗启广 刘毛毛 焦蓬斐 《小型微型计算机系统》 CSCD 北大核心 2016年第3期576-580,共5页
扩展卡尔曼滤波算法(EKF)是将卡尔曼滤波理论(KF)进一步应用到非线性系统中.然而当系统为强非线性时,EKF就会违背局部线性假设,引起误差增大,从而使得其精度降低,最终导致滤波发散.针对上述问题,提出结合多新息(multi-innovation)理论... 扩展卡尔曼滤波算法(EKF)是将卡尔曼滤波理论(KF)进一步应用到非线性系统中.然而当系统为强非线性时,EKF就会违背局部线性假设,引起误差增大,从而使得其精度降低,最终导致滤波发散.针对上述问题,提出结合多新息(multi-innovation)理论的改进EKF算法,即多新息扩展卡尔曼滤波(M I-EKF),使系统在原先只利用单个新息的情况下,扩展为能够利用之前多个时刻的新息,从而大大提高了滤波的精度.另外本文同时也从理论上证明了改进的多新息扩展卡尔曼滤波算法的收敛性.最后仿真结果表明,改进的多新息扩展卡尔曼滤波较标准扩展卡尔曼滤波算法更有效. 展开更多
关键词 扩展卡尔曼滤波 非线性系统 多新息扩展卡尔曼滤波
下载PDF
EKF定位跟踪算法研究 被引量:18
18
作者 罗磊 田增山 陈俊亚 《重庆邮电大学学报(自然科学版)》 北大核心 2009年第1期50-52,60,共4页
为了处理机动目标跟踪过程中的非线性问题,提出了一种基于运动模型的扩展卡尔曼滤波(EKF)算法,该算法精度可以逼近最优估计,适用于任何可用状态空间模型表示的非线性系统。通过仿真表明利用运动模型的扩展卡尔曼滤波方法可以有效地抑制... 为了处理机动目标跟踪过程中的非线性问题,提出了一种基于运动模型的扩展卡尔曼滤波(EKF)算法,该算法精度可以逼近最优估计,适用于任何可用状态空间模型表示的非线性系统。通过仿真表明利用运动模型的扩展卡尔曼滤波方法可以有效地抑制非视距误差(NLOS)对定位精度的影响,从而得到更高的定位跟踪效果。 展开更多
关键词 扩展卡尔曼滤波 运动模型 定位跟踪 非视距误差
下载PDF
基于EKF的永磁同步电机转子位置和速度估计 被引量:29
19
作者 江俊 沈艳霞 纪志成 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第7期1704-1707,共4页
提出了一种新颖的基于EKF(扩展卡尔曼滤波)实现PMSM(永磁同步电机)转子位置和速度估计的方法。利用该算法,通过测量电机的端电压和流过定子线圈的电流在线估计电机转子的位置和速度,实现了永磁同步电机的无传感器控制策略。仿真结果验... 提出了一种新颖的基于EKF(扩展卡尔曼滤波)实现PMSM(永磁同步电机)转子位置和速度估计的方法。利用该算法,通过测量电机的端电压和流过定子线圈的电流在线估计电机转子的位置和速度,实现了永磁同步电机的无传感器控制策略。仿真结果验证了该算法的可行性。 展开更多
关键词 扩展卡尔曼滤波 永磁同步电机 速度估计 无传感器控制
下载PDF
基于EKF的无人机飞行控制系统故障检测 被引量:16
20
作者 刘晓东 钟麦英 柳海 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第6期884-888,共5页
无人机飞行控制系统是一种典型的多传感器闭环控制系统,其执行机构与传感器故障会严重影响系统的安全性与可靠性,针对无人机飞行控制系统故障检测问题的研究具有重要的意义.本文考虑了一类无人机闭环非线性飞行控制系统的故障检测问题,... 无人机飞行控制系统是一种典型的多传感器闭环控制系统,其执行机构与传感器故障会严重影响系统的安全性与可靠性,针对无人机飞行控制系统故障检测问题的研究具有重要的意义.本文考虑了一类无人机闭环非线性飞行控制系统的故障检测问题,针对风扰动影响下无人机纵向非线性系统模型,设计基于扩展卡尔曼滤波器的残差产生器,并应用χ2检验对残差进行评价,实现无人机闭环控制系统的故障检测.同时,基于某型无人机Simulink仿真平台进行仿真实验.结果表明,所提出的方法能够实现空速管堵塞故障和升降舵部分失效故障的检测. 展开更多
关键词 无人机 飞行控制系统 扩展卡尔曼滤波 故障检测
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部