In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso...In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.展开更多
Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamic...Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.展开更多
Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generator...Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators.By selecting suitable arbitrary functions in the similarity reduction solutions,we obtain abundant invariant solutions,including the trigonometric solution,the kink-lump interaction solution,the interaction solution between lump wave and triangular periodic wave,the two-kink solution,the lump solution,the interaction between a lump and two-kink and the periodic lump solution in different planes.These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.展开更多
Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions be...Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.展开更多
This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational funct...This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.展开更多
Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by u...Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.展开更多
In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly const...In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.展开更多
An extended sine-Gordon equation method is proposed to construct exact travelling wave solutions to Maccari's equation based upon a generalized sine-Gordon equation. It is shown that more new travelling wave solut...An extended sine-Gordon equation method is proposed to construct exact travelling wave solutions to Maccari's equation based upon a generalized sine-Gordon equation. It is shown that more new travelling wave solutions can be found by this new method, which include bell-shaped soliton solutions, kink-shaped soliton solutions, periodic wave solution, and new travelling waves.展开更多
In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pro...In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be construc...The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be constructed by the solutions of original models if their solutions are well known, such as the standard constant coefficient KdV equation and the standard compound KdV--Burgers equation, and so on. Then any one of these variable-coefficient equations can be considered as an original model to obtain new variable-coefficient equations whose solutions can also be known by means of transformation relations between solutions of the resulting new variable-coefficient equations and the original equation.展开更多
Darboux transformation (DT) provides us with a comprehensive approach to construct the exact and explicit solutions to the negative extended KdV (eKdV) equation, by which some new solutions such as singular solito...Darboux transformation (DT) provides us with a comprehensive approach to construct the exact and explicit solutions to the negative extended KdV (eKdV) equation, by which some new solutions such as singular soliton, negaton, and positon solutions are computed for the eKdV equation. We rediscover the soliton solution with finiteamplitude in [A.V. Slyunyaev and E.N. Pelinovskii, J. Exp. Theor. Phys. 89 (1999) 173] and discuss the difference between this soliton and the singular soliton. We clarify the relationship between the exact solutions of the eKdV equation and the spectral parameter. Moreover, the interactions of singular two solitons, positon and negaton, positon and soliton, and two positons are studied in detail.展开更多
This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the sys...This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. It just focuses on the weakly non-linear small amplitude waves by introducing two small independent parameters: the nonlinearity ratio ε, represented by the ratio of amplitude to depth, and the dispersion ratio μ, represented by the square of the ratio of depth to wave length, which quantify the relative importance of nonlinearity and dispersion. It derives an extended KdV equation of the interfacial waves using the method adopted by Dullin et al in the study of the surface waves when considering the order up to O(μ^2). As expected, the equation derived from the present work includes, as special cases, those obtained by Dullin et al for surface waves when the surface tension is neglected. The equation derived using an alternative method here is the same as the equation presented by Choi and Camassa. Also it solves the equation by borrowing the method presented by Marchant used for surface waves, and obtains its asymptotic solitary wave solutions when the weakly nonlinear and weakly dispersive terms are balanced in the extended KdV equation.展开更多
The classical Navier–Stokes equation(NSE)is the fundamental partial differential equation that describes the flow of fluids,but in certain cases,like high local density and temperature gradient,it is inconsistent wit...The classical Navier–Stokes equation(NSE)is the fundamental partial differential equation that describes the flow of fluids,but in certain cases,like high local density and temperature gradient,it is inconsistent with the experimental results.Some extended Navier–Stokes equations with diffusion terms taken into consideration have been proposed.However,a consensus conclusion on the specific expression of the additional diffusion term has not been reached in the academic circle.The models adopt the form of the generalized Newtonian constitutive relation by substituting the convection velocity with a new term,or by using some analogy.In this study,a new constitutive relation for momentum transport and a momentum balance equation are obtained based on the molecular kinetic theory.The new constitutive relation preserves the symmetry of the deviation stress,and the momentum balance equation satisfies Galilean invariance.The results show that for Poiseuille flow in a circular micro-tube,self-diffusion in micro-flow needs considering even if the local density gradient is very low.展开更多
The sinh-Gordon equation expansion method is further extended by generMizing the sinh-Gordon equation and constructing new ansatz solution of the considered equation. As its application, the (2+1)-dimensional Konop...The sinh-Gordon equation expansion method is further extended by generMizing the sinh-Gordon equation and constructing new ansatz solution of the considered equation. As its application, the (2+1)-dimensional Konopelchenko-Dubrovsky equation is investigated and abundant exact travelling wave solutions are explicitly obtained including solitary wave solutions, trigonometric function solutions and Jacobi elliptic doubly periodic function solutions, some of which are new exact solutions that we have never seen before within our knowledge. The method can be applied to other nonlinear evolution equations in mathematical physics.展开更多
We study a forced variable-coefficient extended Korteweg-de Vries(KdV)equation in fluid dynamics with respect to internal solitary wave.Bäcklund transformations of the forced variable-coefficient extended KdV equ...We study a forced variable-coefficient extended Korteweg-de Vries(KdV)equation in fluid dynamics with respect to internal solitary wave.Bäcklund transformations of the forced variable-coefficient extended KdV equation are demonstrated with the help of truncated Painlevéexpansion.When the variable coefficients are time-periodic,the wave function evolves periodically over time.Symmetry calculation shows that the forced variable-coefficient extended KdV equation is invariant under the Galilean transformations and the scaling transformations.One-parameter group transformations and one-parameter subgroup invariant solutions are presented.Cnoidal wave solutions and solitary wave solutions of the forced variable-coefficient extended KdV equation are obtained by means of function expansion method.The consistent Riccati expansion(CRE)solvability of the forced variable-coefficient extended KdV equation is proved by means of CRE.Interaction phenomenon between cnoidal waves and solitary waves can be observed.Besides,the interaction waveform changes with the parameters.When the variable parameters are functions of time,the interaction waveform will be not regular and smooth.展开更多
We investigate the techniques for velocity resonance and apply them to construct soliton molecules using two solitons of the extended Lax equation.What is more,each soliton molecule can be transformed into an asymmetr...We investigate the techniques for velocity resonance and apply them to construct soliton molecules using two solitons of the extended Lax equation.What is more,each soliton molecule can be transformed into an asymmetric soliton by changing the parameterφ.In addition,the collision between soliton molecules(or asymmetric soliton)and several soliton solutions is observed.Finally,some related pictures are presented.展开更多
Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at pr...Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at predicting stage, a cubic spline function is adopted at correcting stage, which made the time discretization accuracy up to fourth order; For spatial discretization, a three-point explicit compact difference scheme with arbitrary order accuracy is employed. The extended Boussinesq equations derived by Beji and Nadaoka are solved by the proposed scheme. The numerical results agree well with the experimental data. At the same time, the comparisons of the two numerical results between the present scheme and low accuracy difference method are made, which further show the necessity of using high accuracy scheme to solve the extended Boussinesq equations. As a valid sample, the wave propagation on the rectangular step is formulated by the present scheme, the modelled results are in better agreement with the experimental data than those of Kittitanasuan.展开更多
We present a numerical study of the long time behavior of approxima- tion solution to the Extended Fisher-Kolmogorov equation with periodic boundary conditions. The unique solvability of numerical solution is shown. I...We present a numerical study of the long time behavior of approxima- tion solution to the Extended Fisher-Kolmogorov equation with periodic boundary conditions. The unique solvability of numerical solution is shown. It is proved that there exists a global attractor of the discrete dynamical system. Furthermore, we obtain the long-time stability and convergence of the difference scheme and the upper semicontinuity d(Ah,τ, .A) → O. Our results show that the difference scheme can effectively simulate the infinite dimensional dynamical systems.展开更多
This paper is to investigate the extended(2+1)-dimensional Konopelchenko-Dubrovsky equations,which can be applied to describing certain phenomena in the stratified shear flow,the internal and shallow-water waves, plas...This paper is to investigate the extended(2+1)-dimensional Konopelchenko-Dubrovsky equations,which can be applied to describing certain phenomena in the stratified shear flow,the internal and shallow-water waves, plasmas and other fields.Painleve analysis is passed through via symbolic computation.Bilinear-form equations are constructed and soliton solutions are derived.Soliton solutions and interactions are illustrated.Bilinear-form Backlund transformation and a type of solutions are obtained.展开更多
The prime objective of this work is to analyze the motion of magnetic domain walls(DWs)in a thin layer of magnetostrictive material that is perfectly attached to the upper surface of a thick piezoelectric actuator.In ...The prime objective of this work is to analyze the motion of magnetic domain walls(DWs)in a thin layer of magnetostrictive material that is perfectly attached to the upper surface of a thick piezoelectric actuator.In our analysis,we consider a transversely isotropic hexagonal subclass of magnetostrictive materials that demonstrate structural inversion asymmetry.To this aim,we utilize the one-dimensional extended Landau-Lifshitz-Gilbert equations,which describe the magnetization dynamics under the influence of various factors such as magnetic fields,spin-polarized electric currents,magnetoelastic effects,magnetocrystalline anisotropy,Rashba fields,and nonlinear dry-friction dissipation.By employing the standard traveling wave ansatz,we derive an analytical expression of the most relevant dynamic features:velocity,mobility,threshold,breakdown,and propagation direction of the DWs in both steady and precessional dynamic regimes.Our analytical investigation provides insights into how effectively the considered parameters can control the DW motion.Finally,numerical illustrations of the obtained analytical results show a qualitative agreement with the recent observations.展开更多
基金supported by the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,No.300102253502)the Natural Science Foundation of Shandong Province of China(GrantNo.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140).
文摘In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.
基金Supported by the National Natural Science Foundation of China(12275172)。
文摘Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.
文摘Lie group analysis method is applied to the extended(3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators.By selecting suitable arbitrary functions in the similarity reduction solutions,we obtain abundant invariant solutions,including the trigonometric solution,the kink-lump interaction solution,the interaction solution between lump wave and triangular periodic wave,the two-kink solution,the lump solution,the interaction between a lump and two-kink and the periodic lump solution in different planes.These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.
文摘Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010B17914) and the National Natural Science Foundation of China (Grant No. 10926162).
文摘This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.
基金The author would like to thank the referees very much for their careful reading of the manuscript and many valuable suggestions.
文摘In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.
文摘An extended sine-Gordon equation method is proposed to construct exact travelling wave solutions to Maccari's equation based upon a generalized sine-Gordon equation. It is shown that more new travelling wave solutions can be found by this new method, which include bell-shaped soliton solutions, kink-shaped soliton solutions, periodic wave solution, and new travelling waves.
基金the State Key Basic Research Development Program of China under Grant No.2004CB318000
文摘In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10675065)the Scientific Research Fundof the Education Department of Zhejiang Province of China (Grant No. 20070979)
文摘The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be constructed by the solutions of original models if their solutions are well known, such as the standard constant coefficient KdV equation and the standard compound KdV--Burgers equation, and so on. Then any one of these variable-coefficient equations can be considered as an original model to obtain new variable-coefficient equations whose solutions can also be known by means of transformation relations between solutions of the resulting new variable-coefficient equations and the original equation.
基金supported by National Natural Science Foundation of China under Grant No.10601028
文摘Darboux transformation (DT) provides us with a comprehensive approach to construct the exact and explicit solutions to the negative extended KdV (eKdV) equation, by which some new solutions such as singular soliton, negaton, and positon solutions are computed for the eKdV equation. We rediscover the soliton solution with finiteamplitude in [A.V. Slyunyaev and E.N. Pelinovskii, J. Exp. Theor. Phys. 89 (1999) 173] and discuss the difference between this soliton and the singular soliton. We clarify the relationship between the exact solutions of the eKdV equation and the spectral parameter. Moreover, the interactions of singular two solitons, positon and negaton, positon and soliton, and two positons are studied in detail.
文摘This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. It just focuses on the weakly non-linear small amplitude waves by introducing two small independent parameters: the nonlinearity ratio ε, represented by the ratio of amplitude to depth, and the dispersion ratio μ, represented by the square of the ratio of depth to wave length, which quantify the relative importance of nonlinearity and dispersion. It derives an extended KdV equation of the interfacial waves using the method adopted by Dullin et al in the study of the surface waves when considering the order up to O(μ^2). As expected, the equation derived from the present work includes, as special cases, those obtained by Dullin et al for surface waves when the surface tension is neglected. The equation derived using an alternative method here is the same as the equation presented by Choi and Camassa. Also it solves the equation by borrowing the method presented by Marchant used for surface waves, and obtains its asymptotic solitary wave solutions when the weakly nonlinear and weakly dispersive terms are balanced in the extended KdV equation.
基金Project supported by the National Natural Science Foundation of China–Outstanding Youth Foundation(Grant No.51522903)the National Natural Science Foundation of China(Grant Nos.11602276 and 51479094)the Fund from the Key Laboratory for Mechanics in Fluid Solid Coupling Systems of the Chinese Academy of Sciences。
文摘The classical Navier–Stokes equation(NSE)is the fundamental partial differential equation that describes the flow of fluids,but in certain cases,like high local density and temperature gradient,it is inconsistent with the experimental results.Some extended Navier–Stokes equations with diffusion terms taken into consideration have been proposed.However,a consensus conclusion on the specific expression of the additional diffusion term has not been reached in the academic circle.The models adopt the form of the generalized Newtonian constitutive relation by substituting the convection velocity with a new term,or by using some analogy.In this study,a new constitutive relation for momentum transport and a momentum balance equation are obtained based on the molecular kinetic theory.The new constitutive relation preserves the symmetry of the deviation stress,and the momentum balance equation satisfies Galilean invariance.The results show that for Poiseuille flow in a circular micro-tube,self-diffusion in micro-flow needs considering even if the local density gradient is very low.
基金supported by the National Natural Science Foundation of China under Grant No.10672053the Scientific Research Fund of the Education Department of Hunan Province under Grant No.07D064
文摘The sinh-Gordon equation expansion method is further extended by generMizing the sinh-Gordon equation and constructing new ansatz solution of the considered equation. As its application, the (2+1)-dimensional Konopelchenko-Dubrovsky equation is investigated and abundant exact travelling wave solutions are explicitly obtained including solitary wave solutions, trigonometric function solutions and Jacobi elliptic doubly periodic function solutions, some of which are new exact solutions that we have never seen before within our knowledge. The method can be applied to other nonlinear evolution equations in mathematical physics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775047,11775146,and 11865013).
文摘We study a forced variable-coefficient extended Korteweg-de Vries(KdV)equation in fluid dynamics with respect to internal solitary wave.Bäcklund transformations of the forced variable-coefficient extended KdV equation are demonstrated with the help of truncated Painlevéexpansion.When the variable coefficients are time-periodic,the wave function evolves periodically over time.Symmetry calculation shows that the forced variable-coefficient extended KdV equation is invariant under the Galilean transformations and the scaling transformations.One-parameter group transformations and one-parameter subgroup invariant solutions are presented.Cnoidal wave solutions and solitary wave solutions of the forced variable-coefficient extended KdV equation are obtained by means of function expansion method.The consistent Riccati expansion(CRE)solvability of the forced variable-coefficient extended KdV equation is proved by means of CRE.Interaction phenomenon between cnoidal waves and solitary waves can be observed.Besides,the interaction waveform changes with the parameters.When the variable parameters are functions of time,the interaction waveform will be not regular and smooth.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11371086, 11671258, and 11975145)the Fund of Science and Technology Commission of Shanghai Municipality, China (Grant No. 13ZR1400100)+1 种基金the Fund of Institute for Nonlinear Sciences, Donghua Universitythe Fundamental Research Funds for the Central Universities, China (Grant No. 2232021G-13)
文摘We investigate the techniques for velocity resonance and apply them to construct soliton molecules using two solitons of the extended Lax equation.What is more,each soliton molecule can be transformed into an asymmetric soliton by changing the parameterφ.In addition,the collision between soliton molecules(or asymmetric soliton)and several soliton solutions is observed.Finally,some related pictures are presented.
基金The project was financially supported by the National Natural Science Foundation of China (Grant No50479053)
文摘Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at predicting stage, a cubic spline function is adopted at correcting stage, which made the time discretization accuracy up to fourth order; For spatial discretization, a three-point explicit compact difference scheme with arbitrary order accuracy is employed. The extended Boussinesq equations derived by Beji and Nadaoka are solved by the proposed scheme. The numerical results agree well with the experimental data. At the same time, the comparisons of the two numerical results between the present scheme and low accuracy difference method are made, which further show the necessity of using high accuracy scheme to solve the extended Boussinesq equations. As a valid sample, the wave propagation on the rectangular step is formulated by the present scheme, the modelled results are in better agreement with the experimental data than those of Kittitanasuan.
基金The NSF (10871055) of Chinathe Fundamental Research Funds (HEUCFL20111102)for the Central Universities
文摘We present a numerical study of the long time behavior of approxima- tion solution to the Extended Fisher-Kolmogorov equation with periodic boundary conditions. The unique solvability of numerical solution is shown. It is proved that there exists a global attractor of the discrete dynamical system. Furthermore, we obtain the long-time stability and convergence of the difference scheme and the upper semicontinuity d(Ah,τ, .A) → O. Our results show that the difference scheme can effectively simulate the infinite dimensional dynamical systems.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023the Open Fund under Grant No.SKLSDE-2011KF-03+2 种基金Supported project under Grant No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronauticsthe National High Technology Research and Development Program of China(863 Program) under Grant No.2009AA043303the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
文摘This paper is to investigate the extended(2+1)-dimensional Konopelchenko-Dubrovsky equations,which can be applied to describing certain phenomena in the stratified shear flow,the internal and shallow-water waves, plasmas and other fields.Painleve analysis is passed through via symbolic computation.Bilinear-form equations are constructed and soliton solutions are derived.Soliton solutions and interactions are illustrated.Bilinear-form Backlund transformation and a type of solutions are obtained.
基金S.Dwivedi would like to thank the Science and En-gineering Research Board(SERB),Department of Science and Technol-ogy,Government of India,and the National Institute of Technology Andhra Pradesh for the Financial Support(Grant Nos.CRG/2019/003101,NITAP/SDG/15/2020),respectively.
文摘The prime objective of this work is to analyze the motion of magnetic domain walls(DWs)in a thin layer of magnetostrictive material that is perfectly attached to the upper surface of a thick piezoelectric actuator.In our analysis,we consider a transversely isotropic hexagonal subclass of magnetostrictive materials that demonstrate structural inversion asymmetry.To this aim,we utilize the one-dimensional extended Landau-Lifshitz-Gilbert equations,which describe the magnetization dynamics under the influence of various factors such as magnetic fields,spin-polarized electric currents,magnetoelastic effects,magnetocrystalline anisotropy,Rashba fields,and nonlinear dry-friction dissipation.By employing the standard traveling wave ansatz,we derive an analytical expression of the most relevant dynamic features:velocity,mobility,threshold,breakdown,and propagation direction of the DWs in both steady and precessional dynamic regimes.Our analytical investigation provides insights into how effectively the considered parameters can control the DW motion.Finally,numerical illustrations of the obtained analytical results show a qualitative agreement with the recent observations.