By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soli...By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution, bright and dark soliton solution, alternating phase bright soliton solution, alternating phase dark soliton solution, and alternating phase bright and dark soliton solution, if a special relation is bound on the coefficients of the equation.展开更多
The evolution of solitons in Bose-Einstein condensates (BECs) with time-dependent atomic scattering length in an expulsive parabolic potential is studied. Based on the extended hyperbolic function method, we success...The evolution of solitons in Bose-Einstein condensates (BECs) with time-dependent atomic scattering length in an expulsive parabolic potential is studied. Based on the extended hyperbolic function method, we successfully obtain the bright and dark soliton solutions. In addition, some new soliton solutions in this model are found. The results in this paper include some in the literature (Phys. Rev. Lett. 94(2005)050402 and Chin. Phys. Lett. 22(2005) 1855).展开更多
The so-called extended hyperbolic complex (EHC) function method is used to study further the stationary axisymmetric Einstein Maxwell theory with p Abelian gauge fields (EM-p theory, for short), Two EHC structural...The so-called extended hyperbolic complex (EHC) function method is used to study further the stationary axisymmetric Einstein Maxwell theory with p Abelian gauge fields (EM-p theory, for short), Two EHC structural Riemann- Hilbert (RH) transformations are constructed and are then shown to give an infinite-dimensional symmetry group of the EM-p theory. This symmetry group is verified to have the structure of semidirect product of Kac-Moody group SU(p + 1, 1) and Virasoro group. Moreover, the infinitesimal forms of these two RH transformations are calculated and found to give exactly the same infinitesimal transformations as in previous author's paper by a different scheme, This demonstrates that the results obtained in the present paper provide some exponentiations of all the infinitesimal symmetry transformations obtained before.展开更多
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Scienoe Foundation of Liaocheng University
文摘By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution, bright and dark soliton solution, alternating phase bright soliton solution, alternating phase dark soliton solution, and alternating phase bright and dark soliton solution, if a special relation is bound on the coefficients of the equation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 1057508 and 10302018), the Natural Science Foundation of Zhejiang Province, China (Grant No Y605056).
文摘The evolution of solitons in Bose-Einstein condensates (BECs) with time-dependent atomic scattering length in an expulsive parabolic potential is studied. Based on the extended hyperbolic function method, we successfully obtain the bright and dark soliton solutions. In addition, some new soliton solutions in this model are found. The results in this paper include some in the literature (Phys. Rev. Lett. 94(2005)050402 and Chin. Phys. Lett. 22(2005) 1855).
基金Project supported by the Science Foundation from Education Department of Liaoning Province, China (Grant No 202142036) and the National Natural Science Foundation of China (Grant No 10475036).
文摘The so-called extended hyperbolic complex (EHC) function method is used to study further the stationary axisymmetric Einstein Maxwell theory with p Abelian gauge fields (EM-p theory, for short), Two EHC structural Riemann- Hilbert (RH) transformations are constructed and are then shown to give an infinite-dimensional symmetry group of the EM-p theory. This symmetry group is verified to have the structure of semidirect product of Kac-Moody group SU(p + 1, 1) and Virasoro group. Moreover, the infinitesimal forms of these two RH transformations are calculated and found to give exactly the same infinitesimal transformations as in previous author's paper by a different scheme, This demonstrates that the results obtained in the present paper provide some exponentiations of all the infinitesimal symmetry transformations obtained before.