BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury re...BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury.C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment.We detected the effects of C2-FH on liver function,inflammatory response and complement activation.Additionally,RNA-sequencing(RNA-Seq)analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity,aspartate aminotransferase activity and lactate dehydrogenase,and reduced liver tissue necrosis caused by APAP.Moreover,it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury.RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.展开更多
Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery...Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population.Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation,a similar role for complement in spinal neuroinflammation is a focus of ongoing research.In this work,we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins,triggers of complement activation,and role of effector functions in the pathology.We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris,and or activation via antibody binding to damage-associated molecular patterns.Several effector functions of complement have been implicated in spinal cord injury,and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury.Following this pathophysiological review,we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects.This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury,to evaluate the phases of involvement of opsonins and anaphylatoxins,and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models.展开更多
H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote...H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.展开更多
BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response.Nevertheless,their role in colorectal cancer(CRC)remains a contentious subject.AIM To elucidate the rela...BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response.Nevertheless,their role in colorectal cancer(CRC)remains a contentious subject.AIM To elucidate the relationship between complement components and CRC risk and clinical characteristics.METHODS Searches were conducted in PubMed,the Cochrane Library,and the China National Knowledge Infrastructure database until June 1,2023.We included cohort studies encompassing participants aged≥18 years,investigating the association between complement components and CRC.The studies were of moderate quality or above,as determined by the Agency for Healthcare Research and Quality.The meta-analysis employed fixed-effects or random-effects models based on the I^(2)test,utilizing risk ratio(RR)and their corresponding 95%confidence interval(CI)for outcomes.Sensitivity and subgroup analyses were performed to validate the robustness of the collective estimates and identify the source of heterogeneity.RESULTS Data from 15 studies,comprising 1631 participants that met the inclusion criteria,were included in the meta-analysis.Our findings indicated that protein levels of cluster of differentiation 46(CD46)(RR=3.66,95%CI:1.75-7.64,P<0.001),CD59(RR=2.86,95%CI:1.36-6.01,P=0.005),and component 1(C1)(RR=5.88,95%CI:1.75-19.73,P=0.004)and serum levels of C3(standardized mean difference=1.82,95%CI:0.06-3.58,P=0.040)were significantly elevated in patients with CRC compared to healthy controls.Strong expression of CD55 or CD59 was associated with a higher incidence of lymph node metastasis,whereas strong CD46 expression correlated with a higher incidence of tumor differentiation compared to low CD46 expression(P<0.05 for all).Although specific pooled results demonstrated notable heterogeneity,subgroup analyses pointed to regional differences as the primary source of inconsistency among the studies.CONCLUSION Our analysis underscores that increased levels of specific complement components are associated with a heightened risk of CRC,emphasizing the potential significance of monitoring elevated complement component levels.展开更多
BACKGROUND Colon cancer(CC)occurrence and progression are considerably influenced by the tumor microenvironment.However,the exact underlying regulatory mechanisms remain unclear.AIM To investigate immune infiltration-...BACKGROUND Colon cancer(CC)occurrence and progression are considerably influenced by the tumor microenvironment.However,the exact underlying regulatory mechanisms remain unclear.AIM To investigate immune infiltration-related differentially expressed genes(DEGs)in CC and specifically explored the role and potential molecular mechanisms of complement factor I(CFI).METHODS Immune infiltration-associated DEGs were screened for CC using bioinformatics.Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines.Stable CFI-knockdown HT29 and HCT116 cell lines were constructed,and the diverse roles of CFI in vitro were assessed using CCK-8,5-ethynyl-2’-deoxyuridine,wound healing,and transwell assays.Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice.Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting.RESULTS Six key immune infiltration-related DEGs were screened,among which the expression of CFI,complement factor B,lymphoid enhancer binding factor 1,and SRY-related high-mobility-group box 4 was upregulated,whereas that of fatty acid-binding protein 1,and bone morphogenic protein-2 was downregulated.Furthermore,CFI could be used as a diagnostic biomarker for CC.Functionally,CFI silencing inhibited CC cell proliferation,migration,invasion,and tumor growth.Mechanistically,CFI knockdown downregulated the expression of key glycolysis-related proteins(glucose transporter type 1,hexokinase 2,lactate dehydrogenase A,and pyruvate kinase M2)and the Wnt pathway-related proteins(β-catenin and c-Myc).Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/β-catenin/c-Myc pathway.CONCLUSION The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/β-catenin/c-Myc pathway,indicating that it could serve as a promising target for therapeutic intervention in CC.展开更多
In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisi...In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisib on colitis-associated cancer.The role of PI3K in promoting cancer progression has been widely recognized,as it is involved in regulating the survival,differentiation,and prolif-eration of cancer cells.The complement Clq/TNF-related protein 6(CTRP6)is a newer tumor-associated factor.Recent studies have revealed the pro-tumor effect of CTRP6 in gastric cancer,hepatocellular carcinoma,colorectal cancer,and other gastrointestinal tumors through the PI3K pathway.This article attempts to reveal the mechanism through which the CTRP6 affects the development of digestive system tumors through the PI3K pathway by summarizing recent research.展开更多
Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in th...Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in the pathogenesis of the disease and its progression towards heart failure,including endothelial dysfunction,autonomic neuropathy,metabolic alterations,oxidative stress,and alterations in ion homeostasis,especially calcium transients[1].In Military Medical Research,Jiang et al.[2]sought to determine the functional role of complement factor D(Adipsin)in the pathophysiology of diabetic cardiomyopathy.展开更多
Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In ...Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.展开更多
·AIM:To analyze the differences in immune indicators and prognosis between Ig G4-positive and negative lacrimal gland benign lymphoepithelial lesion(LGBLEL).·METHODS:This was a single-center retrospective cl...·AIM:To analyze the differences in immune indicators and prognosis between Ig G4-positive and negative lacrimal gland benign lymphoepithelial lesion(LGBLEL).·METHODS:This was a single-center retrospective clinical study including 105 cases of Ig G4-positive LGBLEL and 41 cases of Ig G4-negative LGBLEL.Basic information,related indicators of peripheral venous blood samples using immunoscattering turbidimetry,treatment(partial surgical excision and glucocorticoid therapy)and prognosis(recurrence and death)were collected.Survival curves for recurrence were created using the Kaplan-Meier analysis.Univariate analysis and multivariate regression analysis were used to analyze prognostic factors.·RESULTS:The mean age was 50.10±14.23y and 44.76±11.43y(P=0.033)in Ig G4-positive and negative group respectively.The serum C3 and C4 was lower in Ig G4-positive group(P=0.005,P=0.002),while the serum Ig G and Ig G2 was higher in Ig G4-positive group(P=0.000 and P=0.008).Twenty-one cases had recurrence in Ig G4-positive group and 3 cases recurrence in Ig G4-negative group.The 5-year recurrence-free cumulative percentages of Ig G4-positive group was 81.85%,and 83.46%in the Ig G-negative group(P=0.216).The history of preoperative glucocorticoid therapy,serum C4,Ig G1 and Ig G2 were the factors affecting recurrence in Ig G4-positive group,while serum C4,and Ig G1 were the factors affecting recurrence of LGBLEL.·CONCLUSION:Serum C4 and Ig G1 are the factors affecting recurrence of LGBLEL,while the Ig G4 does not affect recurrence of LGBLEL.展开更多
BACKGROUND Complement overactivation is a major driver of lupus nephritis(LN).Impaired interactions of C-reactive protein(CRP)with complement factor H(CFH)have been shown as a pathogenic mechanism that contributes to ...BACKGROUND Complement overactivation is a major driver of lupus nephritis(LN).Impaired interactions of C-reactive protein(CRP)with complement factor H(CFH)have been shown as a pathogenic mechanism that contributes to the overactivation of complement in LN.However,genetic variations of neither CRP nor CFH show consistent influences on the risk of LN.AIM To examine whether genetic variations of CRP and CFH in combination can improve the risk stratification in Chinese population.METHODS We genotyped six CRP single nucleotide polymorphisms(SNPs)(rs1205,rs3093062,rs2794521,rs1800947,rs3093077,and rs1130864)and three CFH SNPs(rs482934,rs1061170,and rs1061147)in 270 LN patients and 303 healthy subjects.RESULTS No linkage was found among CRP and CFH SNPs,indicating lack of genetic interactions between the two genes.Moreover,CRP and CFH SNPs,neither individually nor in combination,are associated with the risk or clinical manifestations of LN.Given the unambiguous pathogenic roles of the two genes.CONCLUSION These findings suggest that the biological effects of most genetic variations of CRP and CFH on their expressions or activities are not sufficient to influence the disease course of LN.展开更多
基金Supported by Natural Science Foundation of Guangxi,No.2020GXNSFDA238006Special Fund of the Central Government Guiding Local Scientific and Technological Development by Guangxi Science and Technology Department,No.GuikeZY21195024Research Enhancement Project for Junior Faculty in Higher Education Institutes of Guangxi,No.2018KY0419.
文摘BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury.C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment.We detected the effects of C2-FH on liver function,inflammatory response and complement activation.Additionally,RNA-sequencing(RNA-Seq)analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity,aspartate aminotransferase activity and lactate dehydrogenase,and reduced liver tissue necrosis caused by APAP.Moreover,it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury.RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.
基金supported by the Department of Veterans Affairs(VA Merit Award BX004256)(to AMA)Emory Department of Neurosurgery Catalyst GrantEmory Medical Care Foundation Grant(to AMA and JG)。
文摘Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population.Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation,a similar role for complement in spinal neuroinflammation is a focus of ongoing research.In this work,we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins,triggers of complement activation,and role of effector functions in the pathology.We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris,and or activation via antibody binding to damage-associated molecular patterns.Several effector functions of complement have been implicated in spinal cord injury,and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury.Following this pathophysiological review,we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects.This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury,to evaluate the phases of involvement of opsonins and anaphylatoxins,and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models.
基金supported by the earmarked fund for China Agriculture Research System(CARS-40)the Key Research and Development Project of Yangzhou(Modern Agriculture),China(YZ2022052)the‘‘High-end Talent Support Program’’of Yangzhou University,China。
文摘H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.
文摘BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response.Nevertheless,their role in colorectal cancer(CRC)remains a contentious subject.AIM To elucidate the relationship between complement components and CRC risk and clinical characteristics.METHODS Searches were conducted in PubMed,the Cochrane Library,and the China National Knowledge Infrastructure database until June 1,2023.We included cohort studies encompassing participants aged≥18 years,investigating the association between complement components and CRC.The studies were of moderate quality or above,as determined by the Agency for Healthcare Research and Quality.The meta-analysis employed fixed-effects or random-effects models based on the I^(2)test,utilizing risk ratio(RR)and their corresponding 95%confidence interval(CI)for outcomes.Sensitivity and subgroup analyses were performed to validate the robustness of the collective estimates and identify the source of heterogeneity.RESULTS Data from 15 studies,comprising 1631 participants that met the inclusion criteria,were included in the meta-analysis.Our findings indicated that protein levels of cluster of differentiation 46(CD46)(RR=3.66,95%CI:1.75-7.64,P<0.001),CD59(RR=2.86,95%CI:1.36-6.01,P=0.005),and component 1(C1)(RR=5.88,95%CI:1.75-19.73,P=0.004)and serum levels of C3(standardized mean difference=1.82,95%CI:0.06-3.58,P=0.040)were significantly elevated in patients with CRC compared to healthy controls.Strong expression of CD55 or CD59 was associated with a higher incidence of lymph node metastasis,whereas strong CD46 expression correlated with a higher incidence of tumor differentiation compared to low CD46 expression(P<0.05 for all).Although specific pooled results demonstrated notable heterogeneity,subgroup analyses pointed to regional differences as the primary source of inconsistency among the studies.CONCLUSION Our analysis underscores that increased levels of specific complement components are associated with a heightened risk of CRC,emphasizing the potential significance of monitoring elevated complement component levels.
文摘BACKGROUND Colon cancer(CC)occurrence and progression are considerably influenced by the tumor microenvironment.However,the exact underlying regulatory mechanisms remain unclear.AIM To investigate immune infiltration-related differentially expressed genes(DEGs)in CC and specifically explored the role and potential molecular mechanisms of complement factor I(CFI).METHODS Immune infiltration-associated DEGs were screened for CC using bioinformatics.Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines.Stable CFI-knockdown HT29 and HCT116 cell lines were constructed,and the diverse roles of CFI in vitro were assessed using CCK-8,5-ethynyl-2’-deoxyuridine,wound healing,and transwell assays.Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice.Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting.RESULTS Six key immune infiltration-related DEGs were screened,among which the expression of CFI,complement factor B,lymphoid enhancer binding factor 1,and SRY-related high-mobility-group box 4 was upregulated,whereas that of fatty acid-binding protein 1,and bone morphogenic protein-2 was downregulated.Furthermore,CFI could be used as a diagnostic biomarker for CC.Functionally,CFI silencing inhibited CC cell proliferation,migration,invasion,and tumor growth.Mechanistically,CFI knockdown downregulated the expression of key glycolysis-related proteins(glucose transporter type 1,hexokinase 2,lactate dehydrogenase A,and pyruvate kinase M2)and the Wnt pathway-related proteins(β-catenin and c-Myc).Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/β-catenin/c-Myc pathway.CONCLUSION The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/β-catenin/c-Myc pathway,indicating that it could serve as a promising target for therapeutic intervention in CC.
文摘In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisib on colitis-associated cancer.The role of PI3K in promoting cancer progression has been widely recognized,as it is involved in regulating the survival,differentiation,and prolif-eration of cancer cells.The complement Clq/TNF-related protein 6(CTRP6)is a newer tumor-associated factor.Recent studies have revealed the pro-tumor effect of CTRP6 in gastric cancer,hepatocellular carcinoma,colorectal cancer,and other gastrointestinal tumors through the PI3K pathway.This article attempts to reveal the mechanism through which the CTRP6 affects the development of digestive system tumors through the PI3K pathway by summarizing recent research.
基金National Institutes of Health(NIH):National Heart,Lung,and Blood Institute(NHLBI:R01-HL164772,R01-HL159062,R01-HL146691,T32-HL144456)National Institute of Diabetes and Digestive and Kidney Diseases(NIDDK:R01-DK123259,R01-DK033823)+2 种基金National Center for Advancing Translational Sciences(NCATS:UL1-TR002556-06,UM1-TR004400)(to Gaetano Santulli)Diabetes Action Research and Education Foundation(to Gaetano Santulli)Monique Weill-Caulier and Irma T.Hirschl Trusts(to Gaetano Santulli).
文摘Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in the pathogenesis of the disease and its progression towards heart failure,including endothelial dysfunction,autonomic neuropathy,metabolic alterations,oxidative stress,and alterations in ion homeostasis,especially calcium transients[1].In Military Medical Research,Jiang et al.[2]sought to determine the functional role of complement factor D(Adipsin)in the pathophysiology of diabetic cardiomyopathy.
基金supported by the Fundamental Research Program of Shanxi Province of China,No.20210302124277the Science Foundation of Shanxi Bethune Hospital,No.2021YJ13(both to JW)。
文摘Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.
基金Supported by Beijing Hospitals Authority’ Ascent Plan (No.DFL20190201)Natural Science Foundation of Beijing (No.7222025)Beijing Science and Technology Rising Star Program-Cross-cooperation (No.20220484218)。
文摘·AIM:To analyze the differences in immune indicators and prognosis between Ig G4-positive and negative lacrimal gland benign lymphoepithelial lesion(LGBLEL).·METHODS:This was a single-center retrospective clinical study including 105 cases of Ig G4-positive LGBLEL and 41 cases of Ig G4-negative LGBLEL.Basic information,related indicators of peripheral venous blood samples using immunoscattering turbidimetry,treatment(partial surgical excision and glucocorticoid therapy)and prognosis(recurrence and death)were collected.Survival curves for recurrence were created using the Kaplan-Meier analysis.Univariate analysis and multivariate regression analysis were used to analyze prognostic factors.·RESULTS:The mean age was 50.10±14.23y and 44.76±11.43y(P=0.033)in Ig G4-positive and negative group respectively.The serum C3 and C4 was lower in Ig G4-positive group(P=0.005,P=0.002),while the serum Ig G and Ig G2 was higher in Ig G4-positive group(P=0.000 and P=0.008).Twenty-one cases had recurrence in Ig G4-positive group and 3 cases recurrence in Ig G4-negative group.The 5-year recurrence-free cumulative percentages of Ig G4-positive group was 81.85%,and 83.46%in the Ig G-negative group(P=0.216).The history of preoperative glucocorticoid therapy,serum C4,Ig G1 and Ig G2 were the factors affecting recurrence in Ig G4-positive group,while serum C4,and Ig G1 were the factors affecting recurrence of LGBLEL.·CONCLUSION:Serum C4 and Ig G1 are the factors affecting recurrence of LGBLEL,while the Ig G4 does not affect recurrence of LGBLEL.
文摘BACKGROUND Complement overactivation is a major driver of lupus nephritis(LN).Impaired interactions of C-reactive protein(CRP)with complement factor H(CFH)have been shown as a pathogenic mechanism that contributes to the overactivation of complement in LN.However,genetic variations of neither CRP nor CFH show consistent influences on the risk of LN.AIM To examine whether genetic variations of CRP and CFH in combination can improve the risk stratification in Chinese population.METHODS We genotyped six CRP single nucleotide polymorphisms(SNPs)(rs1205,rs3093062,rs2794521,rs1800947,rs3093077,and rs1130864)and three CFH SNPs(rs482934,rs1061170,and rs1061147)in 270 LN patients and 303 healthy subjects.RESULTS No linkage was found among CRP and CFH SNPs,indicating lack of genetic interactions between the two genes.Moreover,CRP and CFH SNPs,neither individually nor in combination,are associated with the risk or clinical manifestations of LN.Given the unambiguous pathogenic roles of the two genes.CONCLUSION These findings suggest that the biological effects of most genetic variations of CRP and CFH on their expressions or activities are not sufficient to influence the disease course of LN.