The palaeoproterozoic extensional structure in the east of Liaoning Province underwent sub-bedding ductile shear flowing deformation with metamorphism and magmatic emplacement. The reversal structure following the pro...The palaeoproterozoic extensional structure in the east of Liaoning Province underwent sub-bedding ductile shear flowing deformation with metamorphism and magmatic emplacement. The reversal structure following the processes con- structed the present framework of palaeoproterozoic orogenic belt. As a result of the ductile shearing along the layers, the gold in the Liaohe group was activated, migrated upward to the interface between the Dashiqiao rock formation, which was lower green schist facies and the Gaixian rock formation, so the gold deposit was formed in the space of brittle-ductile shear zone as ductile-shear-zone-typed stratabound gold deposit.展开更多
The primary objective of the present literature review is to provide a constructive and systematical discussion based on the relevant development,unsolved issues,gaps,and misconceptions in the literature regarding the...The primary objective of the present literature review is to provide a constructive and systematical discussion based on the relevant development,unsolved issues,gaps,and misconceptions in the literature regarding the fields of study that are building blocks of artificial intelligence-aided life extension assessment for offshore wind turbine support structures.The present review aims to set up the needed guidelines to develop a multi-disciplinary framework for life extension management and certification of the support structures for offshore wind turbines using artificial intelligence.The main focus of the literature review centres around the intelligent risk-based life extension management of offshore wind turbine support structures.In this regard,big data analytics,advanced signal processing techniques,supervised and unsupervised machine learning methods are discussed within the structural health monitoring and condition-based maintenance planning,the development of digital twins.Furthermore,the present review discusses the critical failure mechanisms affecting the structural condition,such as high-cycle fatigue,low-cycle fatigue,fracture,ultimate strength,and corrosion,considering deterministic and probabilistic approaches.展开更多
Excellent results are obtained in structure analysis with jew phases of structure factors by the maximum-entropy method (MEM) for CaGaN PbCO3 and ReBe22 single crystals. The computation time and memory space are minim...Excellent results are obtained in structure analysis with jew phases of structure factors by the maximum-entropy method (MEM) for CaGaN PbCO3 and ReBe22 single crystals. The computation time and memory space are minimized by symmetry operations so that structure analysis by the MEM can be carried out with a personal computer.展开更多
Using AVISO satellite altimeter observations during 1993–2015 and a manual eddy detection method, a total of 276 anticyclonic rings and 242 cyclonic rings shed from the Kuroshio Extension(KE) were identified, and the...Using AVISO satellite altimeter observations during 1993–2015 and a manual eddy detection method, a total of 276 anticyclonic rings and 242 cyclonic rings shed from the Kuroshio Extension(KE) were identified, and their three-dimensional(3D) anomaly structures were further reconstructd based on the Argo float data and the Japan Agency for Marine-Earth Science and Technology(JAMSTEC) cruise and buoy data through an interpolation method. It is found that the cyclonic(anticyclonic) rings presented consistent negative(positive) anomalies of potential temperature;meanwhile the relevant maximum anomaly center became increasingly shallow for the cyclonic rings whereas it went deeper for the anticyclonic rings as the potential temperature anomaly decreased from the west to the east. The above deepening or shoaling trend is associated with the zonal change of the depth of the main thermocline. Moreover, the composite cold ring between 140° and 150°E was found to exhibit a double-core vertical structure due to the existence of mode water with low potential vorticity. Specifically, a relatively large negative(positive) salinity anomaly and a small positive(negative) one appeared for the composite cyclonic(anticyclonic) ring at the depth above and below 600 m, respectively. The underlying driving force for the temperature and salinity anomaly of the composite rings was also attempted, which varies depending on the intensity of the background current and the temperature and salinity fields in different areas of the KE region, and the rings’ influences on the temperature and salinity could reach deeper than 1 000 m on average.展开更多
This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP). Knowledge and assessment of impacts of aging on structures are essential to plant life extension analys...This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP). Knowledge and assessment of impacts of aging on structures are essential to plant life extension analysis,especially performance to severe loadings such as loss-of-coolant-accidents or major seismic events. Plant life extension issues are of keen interest in countries (like the United States) which have a large,aging fleet of NPPs. This paper addresses the overlap and relationship of structure aging to severe loading performance,with particular emphasis on containment structures.展开更多
Detailed three-dimensional structural studies indicate that the Bixiling area, Dabie massif, central China shows the deepest exposed levels of the orogenic wedge formed during the Triassic Yangtze -Sino-Korean contine...Detailed three-dimensional structural studies indicate that the Bixiling area, Dabie massif, central China shows the deepest exposed levels of the orogenic wedge formed during the Triassic Yangtze -Sino-Korean continental collision. New 1 : 10 000 scale structural mapping, combined with detailed petrological analysis in this area, has enabled us to accurately distinguish structures related to the Triassic continental collision from those related to post-collisional deformation in the ultrahigh pressure (UHP) metamorphic unit. The collisional or compressional structures include the massive eclogite with a weak foliation, foliated eclogite or UHP ductile shear zones, as well as upper amphibolite facies shear zones, whereas the post-collisional deformation is characterized by a regionally, flat-lying foliation containing stretching lineations and common reclined folds. The former is present exclusively in the eclogite lenses and their margins, representing orogenic thickening or syn-collisional events, while the latter was best occurred on variable scales under amphibolite facies conditions, showing sub-vertical, extreme shortening and ductile thinning of the metamorphic rock stack. The eclogite facies tectonites that have a marked fabric discordance to the penetrative amphibolite facies extension flow fabric are common. It is emphasized that an extensional tectonic setting following the collision-orogenic thickening stage was, at least partly, responsible for exhumation of the UHP metamorphic rocks in the Dabie massif. A new tectonic evolution model is proposed for the UHP metamorphic belt on the scale of the Dabie massif. The Bixiling area thus provides a window, from which the dynamic processes concerning the formation and exhumation of the UHP rocks can be observed. Regional studies in the Dabie Mountains have confirmed this interpretation.展开更多
The present day observed tectonic framework of ultrahigh pressure (UHP) metamorphic belt in the Dabie Sulu region was dominantly formed by an extensional process at 200-170 Ma, under amphibolite facies conditions, f...The present day observed tectonic framework of ultrahigh pressure (UHP) metamorphic belt in the Dabie Sulu region was dominantly formed by an extensional process at 200-170 Ma, under amphibolite facies conditions, following the Triassic collision between the Sino Korean and Yangtze cratons. UHP relic structures, including massive eclogites with a weak foliation, UHP shear zones and A type folds, that are preserved in less retrograde metamorphism and deformation overprinted eclogite lenses can be recognized using the tectonic analysis. Examples are drawn from the Chengmagang area and Hejiawan area, Hubei; Bixiling area, Anhui, and Donghai area, northern Jiangsu. A speculative kinematic model is proposed for the collision between the cratons based on the UHP relic structures studied, in combination with the data of petrography, geochronology and P T path of UHP metamorphic rocks in the studied region which were reported in literature. It is stressed that only the early UHP relic structures, particularly, regionally consistent foliation and stretching lineations, record and reflect the formation of the UHP metamorphic rocks, and the relative dynamic and kinematic process related to the Triassic NNE directed oblique collision between the Sino Korean and Yangtze cratons.展开更多
The paper discusses the features of active tectonics,seismicity and neotectonic environment in the Northwestern Yunnan extensional region.The intensity of both tectonic activity and seismicity is strong near the south...The paper discusses the features of active tectonics,seismicity and neotectonic environment in the Northwestern Yunnan extensional region.The intensity of both tectonic activity and seismicity is strong near the south and north boundaries in the areas,but weak in the middle.The distribution of the strongest subsided areas,lacustrine terrace and Quaternary fold is characterized by the diagonal symmetry.Formation of extensional tectonics in the Northwestern Yunnan can be explained by passive model,experiencing the action of compressional force in the N-S direction and shear force in the SW-NE direction,and classified as a special pull-apart tectonics.The direction of the composite force is NNE,which is coincided with the results acquired by the methods of water-compressed rupture and physical modelling.展开更多
An interval optimization method for the dynamic response of structures with inter- val parameters is presented.The matrices of structures with interval parameters are given.Com- bining the interval extension with the ...An interval optimization method for the dynamic response of structures with inter- val parameters is presented.The matrices of structures with interval parameters are given.Com- bining the interval extension with the perturbation,the method for interval dynamic response analysis is derived.The interval optimization problem is transformed into a corresponding de- terministic one.Because the mean values and the uncertainties of the interval parameters can be elected design variables,more information of the optimization results can be obtained by the present method than that obtained by the deterministic one.The present method is implemented for a truss structure.The numerical results show that the method is effective.展开更多
Mississippi Valley-type(MVT) Zn-Pb deposits predominantly form within both orogenic forelands and fold-andthrust belts, yet the mineralization process within the latter tectonic setting remains inadequately understood...Mississippi Valley-type(MVT) Zn-Pb deposits predominantly form within both orogenic forelands and fold-andthrust belts, yet the mineralization process within the latter tectonic setting remains inadequately understood. This study, through a comprehensive review of MVT deposits across global fold-and-thrust belts, introduces a novel model elucidating the mineralization process in the context of tectonic belt evolution. It is demonstrated that during the stage Ⅰ, regional compression is introduced by early stages of plate convergence, causing the folding and thrusting and creating structural or lithological traps such as evaporite diapirs and unconformity-related carbonate dissolution-collapse structures. Thereafter, in stage Ⅱ, hydrocarbons begin to migrate and accumulate within these traps, where reduced sulfur is generated through thermochemical or bacterial sulfate reduction concurrent with or preceding Zn-Pb mineralization. In the subsequent stage Ⅲ, as plate convergence persists, the regional stress transitions from compression to transpression or extension. Under these conditions, steeply-dipping extensional faults are generated, facilitating the ascent of metalliferous brines into early-formed structural or lithological traps. Precipitation of Zn and Pb sulfides occurs through the mixing of Zn-Pb-transporting fluids with pre-existing reduced sulfur or by interaction with hydrocarbons.展开更多
The Central Sichuan Block(CSB) is the hardest block between the deep faults of Pujiang-Bazhong and Huaying Mountain in the central part of Sichuan Basin, which lies in the northwestern part of the upper Yangtze Craton...The Central Sichuan Block(CSB) is the hardest block between the deep faults of Pujiang-Bazhong and Huaying Mountain in the central part of Sichuan Basin, which lies in the northwestern part of the upper Yangtze Craton. The CSB has long been considered as the oldest and most stable core area of Yangtze Craton, with the uniform basement and high level of hardening. Here we present a detailed interpretation of deep structures in the CSB by integrating high-resolution seismic data(approx. 50000 km2) with large-scale aeromagnetic data. Results show that eight Neoproterozoic extensional structures of different scales are nearly EW-, NEE-, and NW-trending in the CSB. Discovery of these extensional structures changes previous understanding of the CSB as a unified block. The extensional structures experienced one or two stages of extension in the longitudinal section, and filled with 3000–5000-m-thick weakly magnetic materials. Development of basal A-type granite in Weiyuan, Sichuan Basin and bimodal volcanic rocks of the Suxiong Formation, Western Sichuan confirms the CSB's Neoproterozoic extensional tectonic setting. The newly discovered Neoproterozoic extensional structures are of great significance for source rock and favorable sedimentary facies distribution, reservoir development, and gas accumulation.展开更多
Multi-stage Mesozoic thrust-nappe and extensional structures are distributed in the east segment of the Southeast Yangtze Block situated in the junction region of Zhejiang-Jiangxi-Anhui provinces. The features and gen...Multi-stage Mesozoic thrust-nappe and extensional structures are distributed in the east segment of the Southeast Yangtze Block situated in the junction region of Zhejiang-Jiangxi-Anhui provinces. The features and genetic mechanism of the deformations were analyzed after a detailed field observation of their distribution, geometry, and kinematics. In addition, the time sequences of the thrust and extensional structures were determined by combining the results of the comparative analysis with the chronological evidence of strata and magmatic rocks cut by a fault or formed after a fault according to field facts. This study identified three stages of the nappe structures and at least two stages of the extensional structures during the Mesozoic. The geotectonic setting of the nappe and extensional structures was considered to be related to the different geodynamics in the study area including the Early Mesozoic geological event, i.e., N-S compression, forming Lantian fault, etc.;the Late Mesozoic flat-slab subduction, forming Xiaoxi thrust fault and tectonic window;and the roll-back of the paleoPacific Plate, forming extensional structures like basin marginal fault;the last compression, forming Wucheng-Shenxian fault. These findings provide additional evidence for remodeling the tectonic and geodynamic evolution of Southeast China.展开更多
Thrust-nappe structures and extensional struc-tures simultaneously occur in the northern part of the Dabie Mountains. The systematic structural study reveals that extensional structures along the Mozitan-Xiaotian faul...Thrust-nappe structures and extensional struc-tures simultaneously occur in the northern part of the Dabie Mountains. The systematic structural study reveals that extensional structures along the Mozitan-Xiaotian fault and thrust-nappe structures that take the Jinzhai-Shucheng fault as their frontal thrust share the same shear sense, and display a transitional relationship from the ductile exten- sional structure of deep level in the south to the ductile-brit- tle and brittle thrust-nappe structure of shallow level in the north. The extensional and thrust-nappe structures in the region are explained to result from post-collisional processes by the continuous subduction of the Yangtze continental block and the extension induced by the uplifting of the core part of the Dabie Mountains, which are components of the extensional structures produced in the exhumation process of the ultrahigh pressure metamorphic rocks in the Dabie Mountains. Because of the frontal blocking in the process of the north-westward spreading, the extension and detachment of the low-grade metamorphic rocks along the Mozi-tan-Xiaotian fault was transformed into the northwestward thrusting, resulting in the thrust-nappe structures. They de-veloped in the period of 200 170 Ma, maybe last till the late Jurassic.展开更多
There is a belt of metamorphic core complexes in the western margin of the Yangtze craton . The geological setting of the belt is similar to that of the Cordilleran metamorphic core complexes . A typical one in this b...There is a belt of metamorphic core complexes in the western margin of the Yangtze craton . The geological setting of the belt is similar to that of the Cordilleran metamorphic core complexes . A typical one in this belt is the Jianglang metamorphic core complex , which has a configuration consisting of three layers : a core complex consisting of Mesoproterozoic schist sequence . a ductile middle slab consisting of Paleozoic meta- sedimentary -basalt characterized by the development of ' folding layer' and an upper cover consisting of Xikang Group which has suffered both buckling and flattening . A detachment fault developed along the contact boundary between the cover and basement causes the omission of Upper Sinian and Cambrian at the base of cover . A lot of normal ductile shear zones developed in the cover causes the thinning of it . All the features show that the early extension results in the thinning of crust , but the formation of the dome and exposure of basement rocks may be the results of superimposing of the E-W directed contraction and the following southward thrusting during Indosinian to Yanshanian orogeny . Syntectonic plutonism and pervasive thermo - metamor-phism in the cover suggest that the thermal uplift also causes the uplift of the MCC .展开更多
The Pearl River Mouth Basin(PRMB)is an important area for studying the evolution of continental marginal basins in the northern South China Sea(SCS),but the structural variability and spatiotemporal rifting process re...The Pearl River Mouth Basin(PRMB)is an important area for studying the evolution of continental marginal basins in the northern South China Sea(SCS),but the structural variability and spatiotemporal rifting process remains poorly understood.This study investigates the differential structural features of the eastern,middle and western PRMB,as well as the extensional deformation laws in operation during the rifting stage,according to an integrated analysis of geometric characteristics and kinematic parameters,i.e.,horizontal displacement and stretching factors of basin and crust.The PRMB underwent at least three phases of intense extension,which varied in time and space.(1)During the middle Eocene,most sags in the PRMB were intensely stretched and high-angle planar to listric boundary faults controlled the wedge-shaped stratigraphic geometry.(2)During the late Eocene-to-early Oligocene,the stratigraphic geometry of the sags was slightly wedge-shaped and continuously controlled by boundary faults,however,the extensional strength decreased relatively in the Northern depression zone,but increased in the Southern depression zone.(3)During the late Oligocene,the extension was extremely weak in the northeast PRMB,but relatively strong in the southwest PRMB,leading to tabular stratigraphic geometry in the northeast PRMB,but localized slightly wedge-shaped stratigraphic geometry in the southwest.The southwest PRMB still underwent relatively strong extension during the early Miocene.The southwest PRMB that was induced by a small-scale localized mantle convection system constantly rifted during the late Oligocene,controlled by the weak lithosphere,westward(southwestward)diachronous opening and southward jump of the ocean ridge.The applied quantitative parameters and spatiotemporal rifting process may be used as a reference with which to study the segmented continental margin rifts.展开更多
花山岩体位于长江中下游成矿带庐枞矿集区东南部的A型花岗岩带内。详细的岩相学工作显示,花山岩体岩性为正长花岗岩。锆石U-Pb激光定年结果显示,花山正长花岗岩的侵位年龄为(125.2±0.8)Ma,其形成于长江中下游地区早白垩世伸展的构...花山岩体位于长江中下游成矿带庐枞矿集区东南部的A型花岗岩带内。详细的岩相学工作显示,花山岩体岩性为正长花岗岩。锆石U-Pb激光定年结果显示,花山正长花岗岩的侵位年龄为(125.2±0.8)Ma,其形成于长江中下游地区早白垩世伸展的构造背景之下。综合分析前人的年代学研究成果,庐枞矿集区早白垩世岩浆活动可以划分为134~128 Ma、131~124 Ma、99~96 Ma 3个阶段,包括花山岩体在内的A型花岗岩是第二阶段岩浆活动的产物,其形成受控于早白垩世中国东部统一的伸展构造事件。展开更多
文摘The palaeoproterozoic extensional structure in the east of Liaoning Province underwent sub-bedding ductile shear flowing deformation with metamorphism and magmatic emplacement. The reversal structure following the processes con- structed the present framework of palaeoproterozoic orogenic belt. As a result of the ductile shearing along the layers, the gold in the Liaohe group was activated, migrated upward to the interface between the Dashiqiao rock formation, which was lower green schist facies and the Gaixian rock formation, so the gold deposit was formed in the space of brittle-ductile shear zone as ductile-shear-zone-typed stratabound gold deposit.
文摘The primary objective of the present literature review is to provide a constructive and systematical discussion based on the relevant development,unsolved issues,gaps,and misconceptions in the literature regarding the fields of study that are building blocks of artificial intelligence-aided life extension assessment for offshore wind turbine support structures.The present review aims to set up the needed guidelines to develop a multi-disciplinary framework for life extension management and certification of the support structures for offshore wind turbines using artificial intelligence.The main focus of the literature review centres around the intelligent risk-based life extension management of offshore wind turbine support structures.In this regard,big data analytics,advanced signal processing techniques,supervised and unsupervised machine learning methods are discussed within the structural health monitoring and condition-based maintenance planning,the development of digital twins.Furthermore,the present review discusses the critical failure mechanisms affecting the structural condition,such as high-cycle fatigue,low-cycle fatigue,fracture,ultimate strength,and corrosion,considering deterministic and probabilistic approaches.
文摘Excellent results are obtained in structure analysis with jew phases of structure factors by the maximum-entropy method (MEM) for CaGaN PbCO3 and ReBe22 single crystals. The computation time and memory space are minimized by symmetry operations so that structure analysis by the MEM can be carried out with a personal computer.
基金The National Key Research and Development Program of China under contract No. 2016YFC1402607Scientific Research Foundation of Third Institude of Oceanography, Ministry of Nature Resources under contract Nos 2017012 and 2018001Global Change and Air-Sea Interaction Program under contract Nos GASI-IPOVAI-02 and GASI-IPOVAI-03.
文摘Using AVISO satellite altimeter observations during 1993–2015 and a manual eddy detection method, a total of 276 anticyclonic rings and 242 cyclonic rings shed from the Kuroshio Extension(KE) were identified, and their three-dimensional(3D) anomaly structures were further reconstructd based on the Argo float data and the Japan Agency for Marine-Earth Science and Technology(JAMSTEC) cruise and buoy data through an interpolation method. It is found that the cyclonic(anticyclonic) rings presented consistent negative(positive) anomalies of potential temperature;meanwhile the relevant maximum anomaly center became increasingly shallow for the cyclonic rings whereas it went deeper for the anticyclonic rings as the potential temperature anomaly decreased from the west to the east. The above deepening or shoaling trend is associated with the zonal change of the depth of the main thermocline. Moreover, the composite cold ring between 140° and 150°E was found to exhibit a double-core vertical structure due to the existence of mode water with low potential vorticity. Specifically, a relatively large negative(positive) salinity anomaly and a small positive(negative) one appeared for the composite cyclonic(anticyclonic) ring at the depth above and below 600 m, respectively. The underlying driving force for the temperature and salinity anomaly of the composite rings was also attempted, which varies depending on the intensity of the background current and the temperature and salinity fields in different areas of the KE region, and the rings’ influences on the temperature and salinity could reach deeper than 1 000 m on average.
文摘This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP). Knowledge and assessment of impacts of aging on structures are essential to plant life extension analysis,especially performance to severe loadings such as loss-of-coolant-accidents or major seismic events. Plant life extension issues are of keen interest in countries (like the United States) which have a large,aging fleet of NPPs. This paper addresses the overlap and relationship of structure aging to severe loading performance,with particular emphasis on containment structures.
基金This study is supported by the National Natural Science Foundation of China (No. 49972067) the Major State Basic Research Development Program (No. G1999075506).
文摘Detailed three-dimensional structural studies indicate that the Bixiling area, Dabie massif, central China shows the deepest exposed levels of the orogenic wedge formed during the Triassic Yangtze -Sino-Korean continental collision. New 1 : 10 000 scale structural mapping, combined with detailed petrological analysis in this area, has enabled us to accurately distinguish structures related to the Triassic continental collision from those related to post-collisional deformation in the ultrahigh pressure (UHP) metamorphic unit. The collisional or compressional structures include the massive eclogite with a weak foliation, foliated eclogite or UHP ductile shear zones, as well as upper amphibolite facies shear zones, whereas the post-collisional deformation is characterized by a regionally, flat-lying foliation containing stretching lineations and common reclined folds. The former is present exclusively in the eclogite lenses and their margins, representing orogenic thickening or syn-collisional events, while the latter was best occurred on variable scales under amphibolite facies conditions, showing sub-vertical, extreme shortening and ductile thinning of the metamorphic rock stack. The eclogite facies tectonites that have a marked fabric discordance to the penetrative amphibolite facies extension flow fabric are common. It is emphasized that an extensional tectonic setting following the collision-orogenic thickening stage was, at least partly, responsible for exhumation of the UHP metamorphic rocks in the Dabie massif. A new tectonic evolution model is proposed for the UHP metamorphic belt on the scale of the Dabie massif. The Bixiling area thus provides a window, from which the dynamic processes concerning the formation and exhumation of the UHP rocks can be observed. Regional studies in the Dabie Mountains have confirmed this interpretation.
基金This paper is supported by the NNSF of China( Nos.497940 41 49772 14 6and49972 0 67) and Major State Basic Research Developme
文摘The present day observed tectonic framework of ultrahigh pressure (UHP) metamorphic belt in the Dabie Sulu region was dominantly formed by an extensional process at 200-170 Ma, under amphibolite facies conditions, following the Triassic collision between the Sino Korean and Yangtze cratons. UHP relic structures, including massive eclogites with a weak foliation, UHP shear zones and A type folds, that are preserved in less retrograde metamorphism and deformation overprinted eclogite lenses can be recognized using the tectonic analysis. Examples are drawn from the Chengmagang area and Hejiawan area, Hubei; Bixiling area, Anhui, and Donghai area, northern Jiangsu. A speculative kinematic model is proposed for the collision between the cratons based on the UHP relic structures studied, in combination with the data of petrography, geochronology and P T path of UHP metamorphic rocks in the studied region which were reported in literature. It is stressed that only the early UHP relic structures, particularly, regionally consistent foliation and stretching lineations, record and reflect the formation of the UHP metamorphic rocks, and the relative dynamic and kinematic process related to the Triassic NNE directed oblique collision between the Sino Korean and Yangtze cratons.
文摘The paper discusses the features of active tectonics,seismicity and neotectonic environment in the Northwestern Yunnan extensional region.The intensity of both tectonic activity and seismicity is strong near the south and north boundaries in the areas,but weak in the middle.The distribution of the strongest subsided areas,lacustrine terrace and Quaternary fold is characterized by the diagonal symmetry.Formation of extensional tectonics in the Northwestern Yunnan can be explained by passive model,experiencing the action of compressional force in the N-S direction and shear force in the SW-NE direction,and classified as a special pull-apart tectonics.The direction of the composite force is NNE,which is coincided with the results acquired by the methods of water-compressed rupture and physical modelling.
基金Project supported by the National Natural Science Foundation of China(No.10202006).
文摘An interval optimization method for the dynamic response of structures with inter- val parameters is presented.The matrices of structures with interval parameters are given.Com- bining the interval extension with the perturbation,the method for interval dynamic response analysis is derived.The interval optimization problem is transformed into a corresponding de- terministic one.Because the mean values and the uncertainties of the interval parameters can be elected design variables,more information of the optimization results can be obtained by the present method than that obtained by the deterministic one.The present method is implemented for a truss structure.The numerical results show that the method is effective.
基金funded by National Natural Science Foundation of China (Grant Nos. 42125204, 92155305, 42103068, 42372114, 42372115)。
文摘Mississippi Valley-type(MVT) Zn-Pb deposits predominantly form within both orogenic forelands and fold-andthrust belts, yet the mineralization process within the latter tectonic setting remains inadequately understood. This study, through a comprehensive review of MVT deposits across global fold-and-thrust belts, introduces a novel model elucidating the mineralization process in the context of tectonic belt evolution. It is demonstrated that during the stage Ⅰ, regional compression is introduced by early stages of plate convergence, causing the folding and thrusting and creating structural or lithological traps such as evaporite diapirs and unconformity-related carbonate dissolution-collapse structures. Thereafter, in stage Ⅱ, hydrocarbons begin to migrate and accumulate within these traps, where reduced sulfur is generated through thermochemical or bacterial sulfate reduction concurrent with or preceding Zn-Pb mineralization. In the subsequent stage Ⅲ, as plate convergence persists, the regional stress transitions from compression to transpression or extension. Under these conditions, steeply-dipping extensional faults are generated, facilitating the ascent of metalliferous brines into early-formed structural or lithological traps. Precipitation of Zn and Pb sulfides occurs through the mixing of Zn-Pb-transporting fluids with pre-existing reduced sulfur or by interaction with hydrocarbons.
基金supported by the National Oil&Gas Major Project of China(Grant No.2011ZX05004)the CNPC Science&Technology Project(Grant No.111702kt00900046)
文摘The Central Sichuan Block(CSB) is the hardest block between the deep faults of Pujiang-Bazhong and Huaying Mountain in the central part of Sichuan Basin, which lies in the northwestern part of the upper Yangtze Craton. The CSB has long been considered as the oldest and most stable core area of Yangtze Craton, with the uniform basement and high level of hardening. Here we present a detailed interpretation of deep structures in the CSB by integrating high-resolution seismic data(approx. 50000 km2) with large-scale aeromagnetic data. Results show that eight Neoproterozoic extensional structures of different scales are nearly EW-, NEE-, and NW-trending in the CSB. Discovery of these extensional structures changes previous understanding of the CSB as a unified block. The extensional structures experienced one or two stages of extension in the longitudinal section, and filled with 3000–5000-m-thick weakly magnetic materials. Development of basal A-type granite in Weiyuan, Sichuan Basin and bimodal volcanic rocks of the Suxiong Formation, Western Sichuan confirms the CSB's Neoproterozoic extensional tectonic setting. The newly discovered Neoproterozoic extensional structures are of great significance for source rock and favorable sedimentary facies distribution, reservoir development, and gas accumulation.
文摘Multi-stage Mesozoic thrust-nappe and extensional structures are distributed in the east segment of the Southeast Yangtze Block situated in the junction region of Zhejiang-Jiangxi-Anhui provinces. The features and genetic mechanism of the deformations were analyzed after a detailed field observation of their distribution, geometry, and kinematics. In addition, the time sequences of the thrust and extensional structures were determined by combining the results of the comparative analysis with the chronological evidence of strata and magmatic rocks cut by a fault or formed after a fault according to field facts. This study identified three stages of the nappe structures and at least two stages of the extensional structures during the Mesozoic. The geotectonic setting of the nappe and extensional structures was considered to be related to the different geodynamics in the study area including the Early Mesozoic geological event, i.e., N-S compression, forming Lantian fault, etc.;the Late Mesozoic flat-slab subduction, forming Xiaoxi thrust fault and tectonic window;and the roll-back of the paleoPacific Plate, forming extensional structures like basin marginal fault;the last compression, forming Wucheng-Shenxian fault. These findings provide additional evidence for remodeling the tectonic and geodynamic evolution of Southeast China.
基金supported by the National Natural Science Foundation of China(Grant No.40072070)the Major State Basic Research Development Program of China(Grant No.TG1999075506)
文摘Thrust-nappe structures and extensional struc-tures simultaneously occur in the northern part of the Dabie Mountains. The systematic structural study reveals that extensional structures along the Mozitan-Xiaotian fault and thrust-nappe structures that take the Jinzhai-Shucheng fault as their frontal thrust share the same shear sense, and display a transitional relationship from the ductile exten- sional structure of deep level in the south to the ductile-brit- tle and brittle thrust-nappe structure of shallow level in the north. The extensional and thrust-nappe structures in the region are explained to result from post-collisional processes by the continuous subduction of the Yangtze continental block and the extension induced by the uplifting of the core part of the Dabie Mountains, which are components of the extensional structures produced in the exhumation process of the ultrahigh pressure metamorphic rocks in the Dabie Mountains. Because of the frontal blocking in the process of the north-westward spreading, the extension and detachment of the low-grade metamorphic rocks along the Mozi-tan-Xiaotian fault was transformed into the northwestward thrusting, resulting in the thrust-nappe structures. They de-veloped in the period of 200 170 Ma, maybe last till the late Jurassic.
基金The study is supported by the key project of science and technology of the Ministry of Geology and Mineral Resources (NO .85-01-005-1 )
文摘There is a belt of metamorphic core complexes in the western margin of the Yangtze craton . The geological setting of the belt is similar to that of the Cordilleran metamorphic core complexes . A typical one in this belt is the Jianglang metamorphic core complex , which has a configuration consisting of three layers : a core complex consisting of Mesoproterozoic schist sequence . a ductile middle slab consisting of Paleozoic meta- sedimentary -basalt characterized by the development of ' folding layer' and an upper cover consisting of Xikang Group which has suffered both buckling and flattening . A detachment fault developed along the contact boundary between the cover and basement causes the omission of Upper Sinian and Cambrian at the base of cover . A lot of normal ductile shear zones developed in the cover causes the thinning of it . All the features show that the early extension results in the thinning of crust , but the formation of the dome and exposure of basement rocks may be the results of superimposing of the E-W directed contraction and the following southward thrusting during Indosinian to Yanshanian orogeny . Syntectonic plutonism and pervasive thermo - metamor-phism in the cover suggest that the thermal uplift also causes the uplift of the MCC .
基金supported by the National Natural Science Foundation of China(Grant Nos.41572202 and 41902124).
文摘The Pearl River Mouth Basin(PRMB)is an important area for studying the evolution of continental marginal basins in the northern South China Sea(SCS),but the structural variability and spatiotemporal rifting process remains poorly understood.This study investigates the differential structural features of the eastern,middle and western PRMB,as well as the extensional deformation laws in operation during the rifting stage,according to an integrated analysis of geometric characteristics and kinematic parameters,i.e.,horizontal displacement and stretching factors of basin and crust.The PRMB underwent at least three phases of intense extension,which varied in time and space.(1)During the middle Eocene,most sags in the PRMB were intensely stretched and high-angle planar to listric boundary faults controlled the wedge-shaped stratigraphic geometry.(2)During the late Eocene-to-early Oligocene,the stratigraphic geometry of the sags was slightly wedge-shaped and continuously controlled by boundary faults,however,the extensional strength decreased relatively in the Northern depression zone,but increased in the Southern depression zone.(3)During the late Oligocene,the extension was extremely weak in the northeast PRMB,but relatively strong in the southwest PRMB,leading to tabular stratigraphic geometry in the northeast PRMB,but localized slightly wedge-shaped stratigraphic geometry in the southwest.The southwest PRMB still underwent relatively strong extension during the early Miocene.The southwest PRMB that was induced by a small-scale localized mantle convection system constantly rifted during the late Oligocene,controlled by the weak lithosphere,westward(southwestward)diachronous opening and southward jump of the ocean ridge.The applied quantitative parameters and spatiotemporal rifting process may be used as a reference with which to study the segmented continental margin rifts.
文摘花山岩体位于长江中下游成矿带庐枞矿集区东南部的A型花岗岩带内。详细的岩相学工作显示,花山岩体岩性为正长花岗岩。锆石U-Pb激光定年结果显示,花山正长花岗岩的侵位年龄为(125.2±0.8)Ma,其形成于长江中下游地区早白垩世伸展的构造背景之下。综合分析前人的年代学研究成果,庐枞矿集区早白垩世岩浆活动可以划分为134~128 Ma、131~124 Ma、99~96 Ma 3个阶段,包括花山岩体在内的A型花岗岩是第二阶段岩浆活动的产物,其形成受控于早白垩世中国东部统一的伸展构造事件。