The multi-objective optimization problem has been encountered in numerous fields such as high-speed train head shape design,overlapping community detection,power dispatch,and unmanned aerial vehicle formation.To addre...The multi-objective optimization problem has been encountered in numerous fields such as high-speed train head shape design,overlapping community detection,power dispatch,and unmanned aerial vehicle formation.To address such issues,current approaches focus mainly on problems with regular Pareto front rather than solving the irregular Pareto front.Considering this situation,we propose a many-objective evolutionary algorithm based on decomposition with dynamic resource allocation(Ma OEA/D-DRA)for irregular optimization.The proposed algorithm can dynamically allocate computing resources to different search areas according to different shapes of the problem’s Pareto front.An evolutionary population and an external archive are used in the search process,and information extracted from the external archive is used to guide the evolutionary population to different search regions.The evolutionary population evolves with the Tchebycheff approach to decompose a problem into several subproblems,and all the subproblems are optimized in a collaborative manner.The external archive is updated with the method of rithms using a variety of test problems with irregular Pareto front.Experimental results show that the proposed algorithèm out-p£performs these five algorithms with respect to convergence speed and diversity of population members.By comparison with the weighted-sum approach and penalty-based boundary intersection approach,there is an improvement in performance after integration of the Tchebycheff approach into the proposed algorithm.展开更多
基金the National Natural Science Foundation of China(Nos.6156301261802085+5 种基金and 61203109)the Guangxi Natural Science Foundation of China(Nos.2014GhXN6SF AA1183712015GXNSFBA139260and 2020GXNSFAA159038)the Guangxi Key Laboratory of Embedded Technology and Intelligent System Foundation(No.2018A-04)the Guangxi Key Laboratory of Trusted Software Foundation(Nos.kx202011 and khx2601926)。
文摘The multi-objective optimization problem has been encountered in numerous fields such as high-speed train head shape design,overlapping community detection,power dispatch,and unmanned aerial vehicle formation.To address such issues,current approaches focus mainly on problems with regular Pareto front rather than solving the irregular Pareto front.Considering this situation,we propose a many-objective evolutionary algorithm based on decomposition with dynamic resource allocation(Ma OEA/D-DRA)for irregular optimization.The proposed algorithm can dynamically allocate computing resources to different search areas according to different shapes of the problem’s Pareto front.An evolutionary population and an external archive are used in the search process,and information extracted from the external archive is used to guide the evolutionary population to different search regions.The evolutionary population evolves with the Tchebycheff approach to decompose a problem into several subproblems,and all the subproblems are optimized in a collaborative manner.The external archive is updated with the method of rithms using a variety of test problems with irregular Pareto front.Experimental results show that the proposed algorithèm out-p£performs these five algorithms with respect to convergence speed and diversity of population members.By comparison with the weighted-sum approach and penalty-based boundary intersection approach,there is an improvement in performance after integration of the Tchebycheff approach into the proposed algorithm.