Silicoaluminophosphate-34(SAPO-34) molecular sieves have important applications in the petrochemical industry as a result of their shape selectivity and suitable acidity. In this work, nanoaggregate SAPO-34 with a lar...Silicoaluminophosphate-34(SAPO-34) molecular sieves have important applications in the petrochemical industry as a result of their shape selectivity and suitable acidity. In this work, nanoaggregate SAPO-34 with a large external surface area was obtained by dissolving pseudoboehmite and tetraethylorthosilicate in an aqueous solution of tetraethylammonium hydroxide and subsequently adding phosphoric acid. After hydrolysis in an alkaline solution, the aluminum and silicon precursors exist as Al(OH)4-and SiO2(OH)-, respectively;this is beneficial for rapid nucleation and the formation of nanoaggregates in the following crystallization process. Additionally, to study the effect of the external surface area and pore size on the catalytic performance of different SAPO-34 structures, the alcoholysis of furfuryl alcohol to ethyl levulinate(EL) was chosen as a model reaction. In a comparison with the traditional cube-like SAPO-34, nanoaggregate SAPO-34 generated a higher yield of 74.1% of EL, whereas that with cube-like SAPO-34 was only 19.9%. Moreover, the stability was remarkably enhanced for nanoaggregate SAPO-34. The greater external surface area and larger number of external surface acid sites are helpful in improving the catalytic performance and avoiding coke deposition.展开更多
To enhance the gasoline octane number,low-octane linear n-alkanes should be converted into their high-octane di-branched isomers via n-alkane hydroisomerization.Therefore,hierarchical SAPO-11-based catalysts are prepa...To enhance the gasoline octane number,low-octane linear n-alkanes should be converted into their high-octane di-branched isomers via n-alkane hydroisomerization.Therefore,hierarchical SAPO-11-based catalysts are prepared by adding different contents of sodium dodecylbenzene sulfonate(SDBS),and they are applied in n-nonane hydroisomerization.When n(SDBS)/n(SiO2)is less than or equal to 0.125,the synthesized hierarchical molecular sieves are all pure SAPO-11,and as the SDBS content increases,the submicron particle size decreases,and the external surface area(ESA)increases.Additionally,these hierarchical SAPO-11 have smaller submicron particles and higher ESA values than conventional SAPO-11.When n(SDBS)/n(SiO2)is greater than 0.125,with increasing SDBS content(n(SDBS)/n(SiO2)=0.25),the synthesized SAPO-11 contains amorphous materials,which leads to a decline in the ESA;with the further increase in SDBS content(n(SDBS)/n(SiO2)=0.5),the products are all amorphous materials.These results indicate that in the case of n(SDBS)/n(SiO2)=0.125,the synthesized SAPO-11 molecular sieve(S–S3)has the most external Brønsted acid centers and the highest ESA of these SAPO-11,and these advantages favor generation of the di-branched isomers in hydrocarbon hydroisomerization.Among these Pt/SAPO-11 catalysts,Pt/S–S3 displays the highest selectivity to entire isomers(83.4%),the highest selectivity to di-branched isomers(28.1%)and the minimum hydrocracking selectivity(15.7%)in n-nonane hydroisomerization.展开更多
The Tibetan Plateau geographically contains internal and external drainage areas based on the distributions of river flows and catchments.The internal and external drainage areas display similar highelevations,while t...The Tibetan Plateau geographically contains internal and external drainage areas based on the distributions of river flows and catchments.The internal and external drainage areas display similar highelevations,while their topographic reliefs are not comparable;the former shows a large low-relief surface,whereas the latter is characterized by relatively high relief.The eastern Lhasa terrane is a key tectonic component of the Tibetan Plateau.It is characterized by high topography and relief,but the thermal history of its basement remains relatively poorly constrained.In this study we report new apatite fission track data from the eastern part of the central Lhasa terrane to constrain the thermo-tectonic evolution of the external drainage area in the southern Tibetan Plateau.Twenty-one new AFT ages and associated thermal history models reveal that the basement underlying the external drainage area in southern Tibet experienced three main phases of rapid cooling in the Cenozoic.The Paleocene-early Eocene(-60–48 Ma)cooling was likely induced by crustal shortening and associated rock exhumation,due to accelerated northward subduction of the NeoTethys oceanic lithosphere.A subsequent cooling pulse lasted from the late Eocene to early Oligocene(-40–28 Ma),possibly due to the thickening and consequential erosion of the Lhasa lithosphere resulted from the continuous northward indentation of the India plate into Eurasia.The most recent rapid cooling event occurred in the middle Miocene-early Pliocene(-16–4 Ma),likely induced by accelerated incision of the Lhasa River and local thrust faulting.Our AFT ages and published low-temperature thermochronological data reveal that the external drainage area experienced younger cooling events compared with the internal drainage area,and that the associated differentiated topographic evolution initiated at ca.30 Ma.The contributing factors for the formation of the high-relief topography mainly contain active surface uplift,fault activity,and the enhanced incision of the Yarlung River.展开更多
文摘Silicoaluminophosphate-34(SAPO-34) molecular sieves have important applications in the petrochemical industry as a result of their shape selectivity and suitable acidity. In this work, nanoaggregate SAPO-34 with a large external surface area was obtained by dissolving pseudoboehmite and tetraethylorthosilicate in an aqueous solution of tetraethylammonium hydroxide and subsequently adding phosphoric acid. After hydrolysis in an alkaline solution, the aluminum and silicon precursors exist as Al(OH)4-and SiO2(OH)-, respectively;this is beneficial for rapid nucleation and the formation of nanoaggregates in the following crystallization process. Additionally, to study the effect of the external surface area and pore size on the catalytic performance of different SAPO-34 structures, the alcoholysis of furfuryl alcohol to ethyl levulinate(EL) was chosen as a model reaction. In a comparison with the traditional cube-like SAPO-34, nanoaggregate SAPO-34 generated a higher yield of 74.1% of EL, whereas that with cube-like SAPO-34 was only 19.9%. Moreover, the stability was remarkably enhanced for nanoaggregate SAPO-34. The greater external surface area and larger number of external surface acid sites are helpful in improving the catalytic performance and avoiding coke deposition.
基金The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China(Grant No.21978323)。
文摘To enhance the gasoline octane number,low-octane linear n-alkanes should be converted into their high-octane di-branched isomers via n-alkane hydroisomerization.Therefore,hierarchical SAPO-11-based catalysts are prepared by adding different contents of sodium dodecylbenzene sulfonate(SDBS),and they are applied in n-nonane hydroisomerization.When n(SDBS)/n(SiO2)is less than or equal to 0.125,the synthesized hierarchical molecular sieves are all pure SAPO-11,and as the SDBS content increases,the submicron particle size decreases,and the external surface area(ESA)increases.Additionally,these hierarchical SAPO-11 have smaller submicron particles and higher ESA values than conventional SAPO-11.When n(SDBS)/n(SiO2)is greater than 0.125,with increasing SDBS content(n(SDBS)/n(SiO2)=0.25),the synthesized SAPO-11 contains amorphous materials,which leads to a decline in the ESA;with the further increase in SDBS content(n(SDBS)/n(SiO2)=0.5),the products are all amorphous materials.These results indicate that in the case of n(SDBS)/n(SiO2)=0.125,the synthesized SAPO-11 molecular sieve(S–S3)has the most external Brønsted acid centers and the highest ESA of these SAPO-11,and these advantages favor generation of the di-branched isomers in hydrocarbon hydroisomerization.Among these Pt/SAPO-11 catalysts,Pt/S–S3 displays the highest selectivity to entire isomers(83.4%),the highest selectivity to di-branched isomers(28.1%)and the minimum hydrocracking selectivity(15.7%)in n-nonane hydroisomerization.
基金supported by National Key Research and Development Program of China(2022YFC2905001,2018YFC0604105)the Opening Foundation of Ministry of Natural Resources Key Laboratory for Mineral Deposits Research,Chengdu University of Technology(grant number:gzck202104)+2 种基金the Fund for Scientific Research-Flanders(FWO,Bilateral Project VS06520N)China Scholarship Council(201908320260,201806190214)support for W.Su and Z.He for their research stay in Belgium.S.Glorie is supported by an Australian Research Council Future Fellowship(FT210100906)。
文摘The Tibetan Plateau geographically contains internal and external drainage areas based on the distributions of river flows and catchments.The internal and external drainage areas display similar highelevations,while their topographic reliefs are not comparable;the former shows a large low-relief surface,whereas the latter is characterized by relatively high relief.The eastern Lhasa terrane is a key tectonic component of the Tibetan Plateau.It is characterized by high topography and relief,but the thermal history of its basement remains relatively poorly constrained.In this study we report new apatite fission track data from the eastern part of the central Lhasa terrane to constrain the thermo-tectonic evolution of the external drainage area in the southern Tibetan Plateau.Twenty-one new AFT ages and associated thermal history models reveal that the basement underlying the external drainage area in southern Tibet experienced three main phases of rapid cooling in the Cenozoic.The Paleocene-early Eocene(-60–48 Ma)cooling was likely induced by crustal shortening and associated rock exhumation,due to accelerated northward subduction of the NeoTethys oceanic lithosphere.A subsequent cooling pulse lasted from the late Eocene to early Oligocene(-40–28 Ma),possibly due to the thickening and consequential erosion of the Lhasa lithosphere resulted from the continuous northward indentation of the India plate into Eurasia.The most recent rapid cooling event occurred in the middle Miocene-early Pliocene(-16–4 Ma),likely induced by accelerated incision of the Lhasa River and local thrust faulting.Our AFT ages and published low-temperature thermochronological data reveal that the external drainage area experienced younger cooling events compared with the internal drainage area,and that the associated differentiated topographic evolution initiated at ca.30 Ma.The contributing factors for the formation of the high-relief topography mainly contain active surface uplift,fault activity,and the enhanced incision of the Yarlung River.