The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation o...The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation of the exterior?wall is a more feasible design to satisfy the energy efficiency of buildings in the?zone. However, the systematic research is urgently needed for the self-insulation of the exterior wall in the hot summer and cold winter zone of China. The paper tested the thermal performance of the common non-clay materials such as shale sintered hollow brick, sand autoclaved aerated concrete block, etc. by means of indoor experiments. The energy efficiency effect of the common materials was verified using dynamic calculation soft PKPM and several constitutions of exterior wall with different main bricks and insulation materials on the heat bridge were simulated, too. Besides, the tests of the thermal performance of exterior wall in real constructions were carried out to testify the practical effect of the recommended constitutions of exterior wall with different main bricks and insulation materials on the heat bridge. The conclusions are: the physical and thermal properties of the six non-clay wall material are better than the clay porous brick;the thermal performance of the non-clay brick can be improved obviously through the rational arrangement of the holes;shale sintered hollow brick after increasing the holes and rationalizing the hole arrangement and sand autoclaved aerated concrete block are recommended for buildings in the hot summer and cold winter area of China. The dynamic calculation results show that the thermal performances?of the non-clay materials are all satisfied with the energy efficiency;The heat transfer coefficient of the exterior wall with composition?③,?in which?the main wall was sand autoclaved aerated concrete block and the material on the heat bridge was sand autoclaved aerated concrete plate, is the smallest among the three recommended compositions.展开更多
This paper mainly uses the method of numerical simulation, and study thermal insulation and energy saving characteristics on the exterior walls of the building and analyze the optimal layout scheme of building exterio...This paper mainly uses the method of numerical simulation, and study thermal insulation and energy saving characteristics on the exterior walls of the building and analyze the optimal layout scheme of building exterior wall and thermal insulation system. Finally, the paper study optimal thickness of insulation materials. The paper elaborate scheme of the existing building energy-saving for exterior wall and the scope of application, the system structure and the construction technology. The results showed that: extruded benzene board that can be used for exterior insulation, frame structure filled with wall preferred ceramsite hollow block. The paper can provides reference selection of insulation for building external wall energy-saving transformation scheme.展开更多
文摘The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation of the exterior?wall is a more feasible design to satisfy the energy efficiency of buildings in the?zone. However, the systematic research is urgently needed for the self-insulation of the exterior wall in the hot summer and cold winter zone of China. The paper tested the thermal performance of the common non-clay materials such as shale sintered hollow brick, sand autoclaved aerated concrete block, etc. by means of indoor experiments. The energy efficiency effect of the common materials was verified using dynamic calculation soft PKPM and several constitutions of exterior wall with different main bricks and insulation materials on the heat bridge were simulated, too. Besides, the tests of the thermal performance of exterior wall in real constructions were carried out to testify the practical effect of the recommended constitutions of exterior wall with different main bricks and insulation materials on the heat bridge. The conclusions are: the physical and thermal properties of the six non-clay wall material are better than the clay porous brick;the thermal performance of the non-clay brick can be improved obviously through the rational arrangement of the holes;shale sintered hollow brick after increasing the holes and rationalizing the hole arrangement and sand autoclaved aerated concrete block are recommended for buildings in the hot summer and cold winter area of China. The dynamic calculation results show that the thermal performances?of the non-clay materials are all satisfied with the energy efficiency;The heat transfer coefficient of the exterior wall with composition?③,?in which?the main wall was sand autoclaved aerated concrete block and the material on the heat bridge was sand autoclaved aerated concrete plate, is the smallest among the three recommended compositions.
文摘This paper mainly uses the method of numerical simulation, and study thermal insulation and energy saving characteristics on the exterior walls of the building and analyze the optimal layout scheme of building exterior wall and thermal insulation system. Finally, the paper study optimal thickness of insulation materials. The paper elaborate scheme of the existing building energy-saving for exterior wall and the scope of application, the system structure and the construction technology. The results showed that: extruded benzene board that can be used for exterior insulation, frame structure filled with wall preferred ceramsite hollow block. The paper can provides reference selection of insulation for building external wall energy-saving transformation scheme.