Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,...Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,polystyrene granule mortar and polyurethane foam in order to study the weatherablility of external thermal insulation system(ETIS).The change rules of adhesive strength were hereby studied at different time period of atmospheric exposure tests.The experimental results show that the adhesive strength of three kinds of ETIS changes a little during high temperature-spraying water cycle,but the adhesive strength of ETIS with EPS board decreases significantly after heating-refrigeration cycle.The lowering rate of adhesive strength with painting finishes is obviously faster than that of tile finishes for ETIS of EPS board during heating-refrigeration cycle.The weatherability of ETIS with EPS board is worse than the other two,and ETIS of polystyrene granule mortar and polyurethane foam are more suitable than ETIS of EPS board in cold area.展开更多
The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick...The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick wall were calculated.In order to study the impact of light-weight external thermal insulation materials,a contrasting experiment was carried out between an external insulated room and an uninsulated room in August,2010,in Chongqing,China.The result shows that outside surface heat storage coefficient of the insulated wall is much less than that of the traditional wall.However,during sunny time,the surface temperature of external walls of the insulated room is obviously higher than that of the uninsulated room.In different orientations,due to different amounts of solar radiation and being irradiated in different time,the contrasting temperature difference(CTD) appears different regularity.In a word,using light-weight external thermal insulation materials has a negative impact on building surrounding thermal environment and people's health.Finally,some suggestions on how to eliminate the impact,such as improving the surface condition of the building envelop,and plating vertical greening,are put forward.展开更多
This study examined the thermal effects of building′s external wall surfaces, using observational data of spatial-temporal distribution of surface temperature, air temperature, and heat flux into and out of external ...This study examined the thermal effects of building′s external wall surfaces, using observational data of spatial-temporal distribution of surface temperature, air temperature, and heat flux into and out of external surface. Results indicate that external wall surface temperature and nearby air temperature vary with the change of orientation, height and season. In general, the external wall surface temperature is lower near the ground, and is higher near the roof, than nearby air temperature. But north wall surface temperature is mostly lower than nearby air temperature at the same height; south wall surface temperature during the daytime in December, and west wall surface temperature all day in August, is respectively higher than nearby air temperature. The heat fluxes into and out of external wall surfaces show the differences that exist in the various orientations, heights and seasons. In December, south wall surface at the lower sites emits heat and north wall surface at the higher sites absorbs heat. In April, all external wall surfaces, emit heat near the ground and absorb heat near the roof. In August, west wall surface all day emits heat, and other wall surfaces just show the commensurate behavior with that in April.展开更多
Internal and external wall surface temperatures (Tws) in April, August and December in Kunming, a city in low latitude plateau, were investigated. Results showed that the Tws in April were of the highest among the thr...Internal and external wall surface temperatures (Tws) in April, August and December in Kunming, a city in low latitude plateau, were investigated. Results showed that the Tws in April were of the highest among the three, followed by August and December. The Tws differences among walls with different orientation were higher in April and December when the weather tends to be sunny, and lower in August with more cloudy days in the time. In April and August, Tws of E-wall was the highest, followed by S- and N-wall. But in December Tws of S-wall might be sometimes higher than E one. Diurnal range of internal Tws was usually smaller than that of the external, with also a time lag for the occurrence of its maximum and minimum. The results can serve as a basis for further research on building microclimate and urban architecture designs. It also gives suggestions for similar studies in other areas.展开更多
Diabetic foot ulcers are one of the most severe complications of diabetes that have imposed great financial and psychological burdens on diabetic patients.A Nocardia rubra cell wall skeleton(Nr-CWS)can be externally a...Diabetic foot ulcers are one of the most severe complications of diabetes that have imposed great financial and psychological burdens on diabetic patients.A Nocardia rubra cell wall skeleton(Nr-CWS)can be externally applied to accelerate wound healing.However,its clinical application has not yet been reported.Herein,we report two patients with diabetic foot ulcers treated with Nr-CWS.After wound debridement,the wound was covered with a sterile cotton ball infiltrated with an Nr-CWS that was diluted with 2.0 mL of saline.The covers were changed every two days until complete wound healing occurred.The two wounds healed after 3 and 12 weeks,respectively.This article aims to provide a new treatment for diabetic foot ulcers,with the hope that physicians may consider an Nr-CWS as a complementary method for the treatment of chronic wounds.展开更多
The porous tiles under the dry and wet conditions were studied. The simplified mathematical model was put forward to simulate the procedure of moisture evaporating for the densely porous tile. The results show that th...The porous tiles under the dry and wet conditions were studied. The simplified mathematical model was put forward to simulate the procedure of moisture evaporating for the densely porous tile. The results show that the capability of passive cooling of the porous tile is more than 5 ℃ with moisture content of 30% in Yangtze river region. Through the comparison between the measuring and simulating data,it can be proved that the simplified math model can be fully used to the engineering application,which provides a reference to explore the thermal performance of other porous material.展开更多
Conductor externalization and insulation failure are frequent complications with the recalled St. Jude Medical Riata implantable cardioverter-defibrillator(ICD) leads. Conductor externalization is a "unique"...Conductor externalization and insulation failure are frequent complications with the recalled St. Jude Medical Riata implantable cardioverter-defibrillator(ICD) leads. Conductor externalization is a "unique" failure mechanism: Cables externalize through the insulation("inside-out" abrasion) and appear outside the lead body. Recently, single reports described a similar failure also for Biotronik leads. Moreover, some studies reported a high rate of electrical dysfunction(not only insulation failure) with Biotronik Linox leads and a reduced survival rate in comparison with the competitors. In this paper we describe the case of a patient with a Biotronik Kentrox ICD lead presenting with signs of insulation failure and conductor externalization at fluoroscopy. Due to the high risk of extraction we decided to implant a new lead, abandoning the damaged one; lead reimplant was uneventful. Subsequently, we review currently available literature about Biotronik Kentrox and Linox ICD lead failure and in particular externalized conductors. Some single-center studies and a nonprospective registry reported a survival rate between 88% and 91% at 5 years for Linox leads, significantly worse than that of other manufacturers. However, the preliminary results of two ongoing multicenter, prospective registries(GALAXY and CELESTIAL) showed 96% survival rate at 5 years after implant, well within industry standards. Ongoing data collection is needed to confirm longer-term performance of this family of ICD leads.展开更多
Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method us...Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting.展开更多
The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial ...The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.展开更多
The finite element model of an external thermal composite insuiation system, thin rendered expanded polystyrene ( EPS ) board, was built with ANSYS 1.0, which had two forms: one with window and one without window. ...The finite element model of an external thermal composite insuiation system, thin rendered expanded polystyrene ( EPS ) board, was built with ANSYS 1.0, which had two forms: one with window and one without window. The finite element analysis results show that the EPS board had very good insulation capacity at both high or low temperature, stress concentration was produced in the center of wall and around window, and the maximum deformation was observed at the edge of board and the minimum deformation was in the center.展开更多
In 1981 Taiwan entered a period of intense construction, meaning that today many buildings are more than 30 years old. Lack of maintenance has led to frequent safety incidents involving external walls. This study focu...In 1981 Taiwan entered a period of intense construction, meaning that today many buildings are more than 30 years old. Lack of maintenance has led to frequent safety incidents involving external walls. This study focuses on a deterioration diagnostic model for external wall tiles of aged buildings, using both stage 1 and stage 2 diagnostic methods. The visual test results are categorized based on impact on public safety, and renovation strategies are proposed. Stage 1 diagnosis mainly adopted the DER visual inspection deterioration assessment method. For enhance the accuracy, this research adopted the Infrared Thermal Imaging detection method to double confirm the visual inspection results. After producing an external wall tile Condition Indicator (CI). For stage 1 diagnostic results that fall in a gray area, stage 2 diagnosis was carried out using a tap tone test, followed by fast Fourier transform and pattern recognition to analyze the tapping results. Finally, the study provides a deterioration evaluation criteria for external wall tiles replacement recommendations and a standard operating procedure for deterioration diagnosis. The study also recommends directions for future amendment of regulations, and provides a basis of reference for the government in determining urban renewal, renovation and maintenance strategies.展开更多
In the analysis and research of few cases on the characteristics of vertical"burning"and spreading of fire in high-rise buildings in China and overseas,the mechanism of vertical spreading of fire along exter...In the analysis and research of few cases on the characteristics of vertical"burning"and spreading of fire in high-rise buildings in China and overseas,the mechanism of vertical spreading of fire along external wall is caused by hot pressing and wind pressure existing in high-rise buildings.The use of external wall combustible materials and near-window combustible items resulted in the formation of high temperature pyrotechnics and the burning of the external wall.Besides,due to the lack of fire-fighting measurements in high-rise building,it is recommended that the external wall of the high-rise building should be equipped with vertical fire-proof partitioning and non-combustible materials by setting up an automatic fire-fighting water curtain system along the vertical section of the external wall and above the indoor window.Therefore,the automatic sprinkler can be set up to prevent the fire from spreading vertically along the external wall of the building effectively.展开更多
Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect...Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect has a significant influence on the net solar heat gain,where the impact of wind direction is stronger than that of wind speed. For regions in lower reaches of the Yangtze River,difference of their average net solar heat gains( NSHGS) is about 20% due to various wind speeds and wind directions.Buildings in districts with a dominant wind direction of north achieve the highest solar energy utilization.展开更多
In this paper, the suitability and construction technology of self-insulation walls were studied under the specific climatic conditions and regional resources of Hanzhong and Ankang in the hot summer and cold winter z...In this paper, the suitability and construction technology of self-insulation walls were studied under the specific climatic conditions and regional resources of Hanzhong and Ankang in the hot summer and cold winter zone of Southern Shaanxi. Through the calculation of heat transfer coefficient and thermal inertia index, combined with the specifications of the shale hollow brick and aerated concrete block of Hanzhong and Ankang in southern Shaanxi, the thermal performance and suitable thickness of the external wall using self-insulation materials that meet the Design Standard for Energy Efficiency of Residential Buildings(DBJ61-65-2011) in Shaanxi Province were obtained. The results showed that the self-insulation wall had technical suitability in the hot summer and cold winter zone. The research results provide not only a theoretical basis for the external wall insulation design of urban residential buildings in the hot summer and cold winter zone of southern Shaanxi, but also a reference for designers to carry out energy-saving design of external walls of residential buildings in other similar climate zones.展开更多
The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation o...The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation of the exterior?wall is a more feasible design to satisfy the energy efficiency of buildings in the?zone. However, the systematic research is urgently needed for the self-insulation of the exterior wall in the hot summer and cold winter zone of China. The paper tested the thermal performance of the common non-clay materials such as shale sintered hollow brick, sand autoclaved aerated concrete block, etc. by means of indoor experiments. The energy efficiency effect of the common materials was verified using dynamic calculation soft PKPM and several constitutions of exterior wall with different main bricks and insulation materials on the heat bridge were simulated, too. Besides, the tests of the thermal performance of exterior wall in real constructions were carried out to testify the practical effect of the recommended constitutions of exterior wall with different main bricks and insulation materials on the heat bridge. The conclusions are: the physical and thermal properties of the six non-clay wall material are better than the clay porous brick;the thermal performance of the non-clay brick can be improved obviously through the rational arrangement of the holes;shale sintered hollow brick after increasing the holes and rationalizing the hole arrangement and sand autoclaved aerated concrete block are recommended for buildings in the hot summer and cold winter area of China. The dynamic calculation results show that the thermal performances?of the non-clay materials are all satisfied with the energy efficiency;The heat transfer coefficient of the exterior wall with composition?③,?in which?the main wall was sand autoclaved aerated concrete block and the material on the heat bridge was sand autoclaved aerated concrete plate, is the smallest among the three recommended compositions.展开更多
基金Funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20050487017)
文摘Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,polystyrene granule mortar and polyurethane foam in order to study the weatherablility of external thermal insulation system(ETIS).The change rules of adhesive strength were hereby studied at different time period of atmospheric exposure tests.The experimental results show that the adhesive strength of three kinds of ETIS changes a little during high temperature-spraying water cycle,but the adhesive strength of ETIS with EPS board decreases significantly after heating-refrigeration cycle.The lowering rate of adhesive strength with painting finishes is obviously faster than that of tile finishes for ETIS of EPS board during heating-refrigeration cycle.The weatherability of ETIS with EPS board is worse than the other two,and ETIS of polystyrene granule mortar and polyurethane foam are more suitable than ETIS of EPS board in cold area.
基金Project(2011BAJ03B13) supported by the National Key Technologies R&D Program of China
文摘The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick wall were calculated.In order to study the impact of light-weight external thermal insulation materials,a contrasting experiment was carried out between an external insulated room and an uninsulated room in August,2010,in Chongqing,China.The result shows that outside surface heat storage coefficient of the insulated wall is much less than that of the traditional wall.However,during sunny time,the surface temperature of external walls of the insulated room is obviously higher than that of the uninsulated room.In different orientations,due to different amounts of solar radiation and being irradiated in different time,the contrasting temperature difference(CTD) appears different regularity.In a word,using light-weight external thermal insulation materials has a negative impact on building surrounding thermal environment and people's health.Finally,some suggestions on how to eliminate the impact,such as improving the surface condition of the building envelop,and plating vertical greening,are put forward.
文摘This study examined the thermal effects of building′s external wall surfaces, using observational data of spatial-temporal distribution of surface temperature, air temperature, and heat flux into and out of external surface. Results indicate that external wall surface temperature and nearby air temperature vary with the change of orientation, height and season. In general, the external wall surface temperature is lower near the ground, and is higher near the roof, than nearby air temperature. But north wall surface temperature is mostly lower than nearby air temperature at the same height; south wall surface temperature during the daytime in December, and west wall surface temperature all day in August, is respectively higher than nearby air temperature. The heat fluxes into and out of external wall surfaces show the differences that exist in the various orientations, heights and seasons. In December, south wall surface at the lower sites emits heat and north wall surface at the higher sites absorbs heat. In April, all external wall surfaces, emit heat near the ground and absorb heat near the roof. In August, west wall surface all day emits heat, and other wall surfaces just show the commensurate behavior with that in April.
基金Key project from the Natural Science Foundation of China (59836250)
文摘Internal and external wall surface temperatures (Tws) in April, August and December in Kunming, a city in low latitude plateau, were investigated. Results showed that the Tws in April were of the highest among the three, followed by August and December. The Tws differences among walls with different orientation were higher in April and December when the weather tends to be sunny, and lower in August with more cloudy days in the time. In April and August, Tws of E-wall was the highest, followed by S- and N-wall. But in December Tws of S-wall might be sometimes higher than E one. Diurnal range of internal Tws was usually smaller than that of the external, with also a time lag for the occurrence of its maximum and minimum. The results can serve as a basis for further research on building microclimate and urban architecture designs. It also gives suggestions for similar studies in other areas.
基金This study was sponsored by the National Natural Science Foundation of China(grant no.82172224).
文摘Diabetic foot ulcers are one of the most severe complications of diabetes that have imposed great financial and psychological burdens on diabetic patients.A Nocardia rubra cell wall skeleton(Nr-CWS)can be externally applied to accelerate wound healing.However,its clinical application has not yet been reported.Herein,we report two patients with diabetic foot ulcers treated with Nr-CWS.After wound debridement,the wound was covered with a sterile cotton ball infiltrated with an Nr-CWS that was diluted with 2.0 mL of saline.The covers were changed every two days until complete wound healing occurred.The two wounds healed after 3 and 12 weeks,respectively.This article aims to provide a new treatment for diabetic foot ulcers,with the hope that physicians may consider an Nr-CWS as a complementary method for the treatment of chronic wounds.
基金Project(50808182) supported by the National Natural Science Foundation of ChinaProject(200806111004) supported by Doctoral Foundation of Ministry of Education of ChinaProject (2008-21) supported by Chongqing Construction Committee
文摘The porous tiles under the dry and wet conditions were studied. The simplified mathematical model was put forward to simulate the procedure of moisture evaporating for the densely porous tile. The results show that the capability of passive cooling of the porous tile is more than 5 ℃ with moisture content of 30% in Yangtze river region. Through the comparison between the measuring and simulating data,it can be proved that the simplified math model can be fully used to the engineering application,which provides a reference to explore the thermal performance of other porous material.
文摘Conductor externalization and insulation failure are frequent complications with the recalled St. Jude Medical Riata implantable cardioverter-defibrillator(ICD) leads. Conductor externalization is a "unique" failure mechanism: Cables externalize through the insulation("inside-out" abrasion) and appear outside the lead body. Recently, single reports described a similar failure also for Biotronik leads. Moreover, some studies reported a high rate of electrical dysfunction(not only insulation failure) with Biotronik Linox leads and a reduced survival rate in comparison with the competitors. In this paper we describe the case of a patient with a Biotronik Kentrox ICD lead presenting with signs of insulation failure and conductor externalization at fluoroscopy. Due to the high risk of extraction we decided to implant a new lead, abandoning the damaged one; lead reimplant was uneventful. Subsequently, we review currently available literature about Biotronik Kentrox and Linox ICD lead failure and in particular externalized conductors. Some single-center studies and a nonprospective registry reported a survival rate between 88% and 91% at 5 years for Linox leads, significantly worse than that of other manufacturers. However, the preliminary results of two ongoing multicenter, prospective registries(GALAXY and CELESTIAL) showed 96% survival rate at 5 years after implant, well within industry standards. Ongoing data collection is needed to confirm longer-term performance of this family of ICD leads.
基金National Key Research and Development Program of China under Grant Nos. 2018YFC1504400 and 2019YFC1509301Natural Science Foundation of China under Grant No. 52078471Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No. 19EEEVL0402
文摘Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting.
基金The National Key Research and Development Program of China(No.2016YFC0701703)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.2016TM045J)the Scientific Innovation Research of Graduate Students in Jiangsu Province(No.KYLX_0151)
文摘The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.
基金The Research Fund for the Doctoral Pro-gram of Higher Education of China(No.20050487017)
文摘The finite element model of an external thermal composite insuiation system, thin rendered expanded polystyrene ( EPS ) board, was built with ANSYS 1.0, which had two forms: one with window and one without window. The finite element analysis results show that the EPS board had very good insulation capacity at both high or low temperature, stress concentration was produced in the center of wall and around window, and the maximum deformation was observed at the edge of board and the minimum deformation was in the center.
文摘In 1981 Taiwan entered a period of intense construction, meaning that today many buildings are more than 30 years old. Lack of maintenance has led to frequent safety incidents involving external walls. This study focuses on a deterioration diagnostic model for external wall tiles of aged buildings, using both stage 1 and stage 2 diagnostic methods. The visual test results are categorized based on impact on public safety, and renovation strategies are proposed. Stage 1 diagnosis mainly adopted the DER visual inspection deterioration assessment method. For enhance the accuracy, this research adopted the Infrared Thermal Imaging detection method to double confirm the visual inspection results. After producing an external wall tile Condition Indicator (CI). For stage 1 diagnostic results that fall in a gray area, stage 2 diagnosis was carried out using a tap tone test, followed by fast Fourier transform and pattern recognition to analyze the tapping results. Finally, the study provides a deterioration evaluation criteria for external wall tiles replacement recommendations and a standard operating procedure for deterioration diagnosis. The study also recommends directions for future amendment of regulations, and provides a basis of reference for the government in determining urban renewal, renovation and maintenance strategies.
文摘In the analysis and research of few cases on the characteristics of vertical"burning"and spreading of fire in high-rise buildings in China and overseas,the mechanism of vertical spreading of fire along external wall is caused by hot pressing and wind pressure existing in high-rise buildings.The use of external wall combustible materials and near-window combustible items resulted in the formation of high temperature pyrotechnics and the burning of the external wall.Besides,due to the lack of fire-fighting measurements in high-rise building,it is recommended that the external wall of the high-rise building should be equipped with vertical fire-proof partitioning and non-combustible materials by setting up an automatic fire-fighting water curtain system along the vertical section of the external wall and above the indoor window.Therefore,the automatic sprinkler can be set up to prevent the fire from spreading vertically along the external wall of the building effectively.
基金National Natural Science Foundation of China(No.51478098)Innovation Foundation of Shanghai Education Commission,China(No.13ZZ054)
文摘Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect has a significant influence on the net solar heat gain,where the impact of wind direction is stronger than that of wind speed. For regions in lower reaches of the Yangtze River,difference of their average net solar heat gains( NSHGS) is about 20% due to various wind speeds and wind directions.Buildings in districts with a dominant wind direction of north achieve the highest solar energy utilization.
文摘In this paper, the suitability and construction technology of self-insulation walls were studied under the specific climatic conditions and regional resources of Hanzhong and Ankang in the hot summer and cold winter zone of Southern Shaanxi. Through the calculation of heat transfer coefficient and thermal inertia index, combined with the specifications of the shale hollow brick and aerated concrete block of Hanzhong and Ankang in southern Shaanxi, the thermal performance and suitable thickness of the external wall using self-insulation materials that meet the Design Standard for Energy Efficiency of Residential Buildings(DBJ61-65-2011) in Shaanxi Province were obtained. The results showed that the self-insulation wall had technical suitability in the hot summer and cold winter zone. The research results provide not only a theoretical basis for the external wall insulation design of urban residential buildings in the hot summer and cold winter zone of southern Shaanxi, but also a reference for designers to carry out energy-saving design of external walls of residential buildings in other similar climate zones.
文摘The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation of the exterior?wall is a more feasible design to satisfy the energy efficiency of buildings in the?zone. However, the systematic research is urgently needed for the self-insulation of the exterior wall in the hot summer and cold winter zone of China. The paper tested the thermal performance of the common non-clay materials such as shale sintered hollow brick, sand autoclaved aerated concrete block, etc. by means of indoor experiments. The energy efficiency effect of the common materials was verified using dynamic calculation soft PKPM and several constitutions of exterior wall with different main bricks and insulation materials on the heat bridge were simulated, too. Besides, the tests of the thermal performance of exterior wall in real constructions were carried out to testify the practical effect of the recommended constitutions of exterior wall with different main bricks and insulation materials on the heat bridge. The conclusions are: the physical and thermal properties of the six non-clay wall material are better than the clay porous brick;the thermal performance of the non-clay brick can be improved obviously through the rational arrangement of the holes;shale sintered hollow brick after increasing the holes and rationalizing the hole arrangement and sand autoclaved aerated concrete block are recommended for buildings in the hot summer and cold winter area of China. The dynamic calculation results show that the thermal performances?of the non-clay materials are all satisfied with the energy efficiency;The heat transfer coefficient of the exterior wall with composition?③,?in which?the main wall was sand autoclaved aerated concrete block and the material on the heat bridge was sand autoclaved aerated concrete plate, is the smallest among the three recommended compositions.