期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Reconstructed Light Extinction Coefficients Using Chemical Compositions of PM_(2.5) in Winter in Urban Guangzhou, China 被引量:22
1
作者 陶俊 曹军骥 +4 位作者 张仁健 朱李华 张涛 施思 陈尊裕 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第2期359-368,共10页
The objective of this study was to reconstruct light extinction coefficients (b ext ) according to chemical composition components of particulate matter up to 2.5 μm in size (PM 2.5 ). PM 2.5 samples were collect... The objective of this study was to reconstruct light extinction coefficients (b ext ) according to chemical composition components of particulate matter up to 2.5 μm in size (PM 2.5 ). PM 2.5 samples were collected at the monitoring station of the South China of Institute of Environmental Science (SCIES, Guangzhou, China) during January 2010, and the online absorbing and scattering coefficients were obtained using an aethalometer and a nephelometer. The measured values of light absorption coefficient by particle (b ap ) and light scattering coefficient by particle (b sp ) significantly correlated (R 2 0.95) with values of b ap and b sp that were reconstructed using the Interagency Monitoring of Protected Visual Environments (IMPROVE) formula when RH was 70%. The measured b ext had a good correlation (R 2 0.83) with the calculated b ext under ambient RH conditions. The result of source apportionment of b ext showed that ammonium sulfate [(NH 4 ) 2 SO 4 ] was the largest contributor (35.0%) to b ext , followed by ammonium nitrate (NH 4 NO 3 , 22.9%), organic matter (16.1%), elemental carbon (11.8%), sea salt (4.7%), and nitrogen dioxide (NO 2 , 9.6%). To improve visibility in Guangzhou, the effective control of secondary particles like sulfates, nitrates, and ammonia should be given more attention in urban environmental management. 展开更多
关键词 light extinction coefficients PM 2.5 aerosol chemical species
下载PDF
Determination of aerosol extinction coefficient and mass extinction efficiency by DOAS with a flashlight source 被引量:3
2
作者 司福祺 刘建国 +6 位作者 谢品华 张玉钧 刘文清 Hiroaki Kuze 刘诚 Nofel Lagrosas Nobuo Takeuchi 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第11期2360-2364,共5页
With the method of differential optical absorption spectroscopy (DOAS), average concentrations of aerosol particles along light path were measured with a flashlight source in Chiba area during the period of one mont... With the method of differential optical absorption spectroscopy (DOAS), average concentrations of aerosol particles along light path were measured with a flashlight source in Chiba area during the period of one month. The optical thickness at 550 nm is compared with the concentration of ground-measured suspended particulate matter (SPM). Good correlations are found between the DOAS and SPM data, leading to the determination of the aerosol mass extinction efficiency (MEE) to be possible in the lower troposphere. The average MEE value is about 7.6m^2.g^-1 , and the parameter exhibits a good correlation with the particle size as determined from the wavelength dependence of the DOAS signal intensity. 展开更多
关键词 aerosol extinction coefficient differential absorption optical spectroscopy mass extinction efficiency size distribution
下载PDF
Vertical root distribution and root cohesion of typical tree species on the Loess Plateau, China 被引量:10
3
作者 ChaoBo ZHANG LiHua CHEN Jing JIANG 《Journal of Arid Land》 SCIE CSCD 2014年第5期601-611,共11页
Black locust(Robinia pseudoacacia L.) and Chinese pine(Pinus tabulaeformis Carr.) are two woody plants that are widely planted on the Loess Plateau for controlling soil erosion and land desertification. In this st... Black locust(Robinia pseudoacacia L.) and Chinese pine(Pinus tabulaeformis Carr.) are two woody plants that are widely planted on the Loess Plateau for controlling soil erosion and land desertification. In this study, we conducted an excavation experiment in 2008 to investigate the overall vertical root distribution characteristics of black locust and Chinese pine. We also performed triaxial compression tests to evaluate the root cohesion(additional soil cohesion increased by roots) of black locust. Two types of root distribution, namely, vertical root(VR) and horizontal root(HR), were used as samples and tested under four soil water content(SWC) conditions(12.7%, 15.0%, 18.0% and 20.0%, respectively). Results showed that the root lengths of the two species were mainly concentrated in the root diameter of 5–20 mm. A comparison of root distribution between the two species indicated that the root length of black locust was significantly greater than that of Chinese pine in nearly all root diameters, although the black locust used in the comparison was 10 years younger than the Chinese pine. Root biomass was also significantly greater in black locust than in Chinese pine, particularly in the root diameters of 3–5 and 5–10 mm. These two species were both found to be deep-rooted. The triaxial compression tests showed that root cohesion was greater in the VR samples than in the HR samples. SWC was negatively related to both soil shear strength and root cohesion. These results could provide useful information on the architectural characteristics of woody root system and expand the knowledge on shallow slope stabilization and soil erosion control by plant roots on the Loess Plateau. 展开更多
关键词 root distribution root cohesion root extinction coefficient soil erosion soil reinforcement Loess Plateau
下载PDF
Light interception and radiation use efficiency response to tridimensional uniform sowing in winter wheat 被引量:10
4
作者 tao zhi-qiang wang de-mei +3 位作者 ma shao-kang yang yu-shuang zhao guang-cai chang xu-hong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第3期566-578,共13页
Improving radiation use efficiency (RUE) of the canopy is necessary to increase wheat (Triticum aesfivum) production. Tridimensional uniform sowing (U) technology has previously been used to construct a uniforml... Improving radiation use efficiency (RUE) of the canopy is necessary to increase wheat (Triticum aesfivum) production. Tridimensional uniform sowing (U) technology has previously been used to construct a uniformly distributed population structure that increases RUE. In this study, we used tridimensional uniform sowing to create a wheat canopy within which light was spread evenly to increase RUE. This study was done during 2014-2016 in the Shunyi District, Beijing, China. The soil type was sandy loam. Wheat was grown in two sowing patterns: (1) tridimensional uniform sowing (U); (2) conventional drilling (D). Four planting densities were used: 1.8, 2.7, 3.6, and 4.5 million plants ha-1. Several indices were measured to compare the wheat canopies: photosynthetic active radiation intercepted by the canopy (IPAR), leaf area index (LAI), leaf mass per unit area (LMA), canopy extinction coefficient (K), and RUE. In two sowing patterns, the K values decreased with increasing planting density, but the K values of U were lower than that of D. LMA and IPAR were higher for U than for D, whereas LAI was nearly the same for both sowing patterns. IPAR and LAI increased with increasing density under the same sowing pattern. However, the difference in IPAR and LAI between the 3.6 and 4.5 million plants ha-1 treatments was not significant for both sowing patterns. Therefore, LAI within the same planting density was not affected by sowing pattern. RUE was the largest for the U mode with a planting density of 3.6 million plants ha-1 treatment. For the D sowing pattern, the lowest planting density (1.8 million plants ha-1) resulted in the highest yield. Light radiation interception was minimal for the D mode with a planting density of 1.8 million plants ha-1 treatment, but the highest RUE and highest yield were observed under this condition. For the U sowing pattern, IPAR increased with increasing planting density, but yield and RUE were the highest with a planting density of 3.6 million plants ha-1. These results indicated that the optimal planting density for improving the canopy light environment differed between the sowing patterns. The effect of sowing patternxplanting density interaction on grain yield, yield components, RUE, IPAR, and LMA was significant (P〈0.05). Correlation analysis indicated that there is a positive significant correlation between grain yield and RUE (t=0.880, P〈0.01), LMA (r=0.613, P〈0.05), andspike number (t=0.624, P〈0.05). These results demonstrated that the tridimensional uniform sowing technique, particularly at a planting density of 3.6 million plants ha-0, can effectively increase light interception and utilization and unit leaf area. This leads to the production of more photosynthetic products that in turn lead to significantly increased spike number (P〈0.05), kernel number, grain weight, and an overall increase in yield. 展开更多
关键词 tridimensional uniform sowing extinction coefficient leaf area index leaf mass per unit area WHEAT
下载PDF
Lockdown-induced Urban Aerosol Change over Changchun, China During COVID-19 Outbreak with Polarization LiDAR 被引量:1
5
作者 CHEN Weiwei DUANMU Lingjian +5 位作者 QIN Yang YANG Hongwu FU Jing LU Chengwei FENG Wei GUO Li 《Chinese Geographical Science》 SCIE CSCD 2022年第5期824-833,共10页
Depending on various government policies,COVID-19(Corona Virus Disease-19) lockdowns have had diverse impacts on global aerosol concentrations.In 2022,Changchun a provincial capital city in Northeast China,suffered a ... Depending on various government policies,COVID-19(Corona Virus Disease-19) lockdowns have had diverse impacts on global aerosol concentrations.In 2022,Changchun a provincial capital city in Northeast China,suffered a severe COVID-19 outbreak and implemented a very strict lockdown that lasted for nearly two months.Using ground-based polarization Light Detection and Ranging(LiDAR),we detected real-time aerosol profile parameters(EC,extinction coefficient;DR,depolarization ratio;AOD,aerosol optical depth),as well as air-quality and meteorological indexes from 1 March to 30 April in 2021 and 2022 to quantify the effects of lockdown on aerosol concentrations.The period in 2022 was divided into three stages:pre-lockdown(1-10 March),strict lockdown(11 March to 10 April),and partial lockdown(11-30 April).The results showed that,during the strict lockdown period,compared with the pre-lockdown period,there were substantial reductions in aerosol parameters(EC and AOD),and this was consistent with the concentrations of the atmospheric pollutants PM_(2.5)(particulate matter with an aerodynamic diameter ≤2.5 μm) and PM_(2.5)(particulate matter with an aerodynamic diameter ≤10 μm),and the Oconcentration increased by 8.3%.During the strict lockdown,the values of EC within0-1 km and AOD decreased by 16.0% and 11.2%,respectively,as compared to the corresponding period in 2021.Lockdown reduced the conventional and organized emissions of air pollutants,and it clearly delayed the time of seasonal emissions from agricultural burning;however,it did not decrease the number of farmland fire points.Considering meteorological factors and eliminating the influence of wind-blown dust events,the results showed that reductions from conventional organized emission sources during the strict lockdown contributed to a 30% air-quality improvement and a 22% reduction in near-surface extinction(0-2 km).Aerosols produced by urban epidemic prevention and disinfection can also be identified using the EC.Regarding seasonal sources of agricultural straw burning,the concentrated burning induced by the epidemic led to the occurrence of heavy pollution from increased amounts of atmospheric aerosols,with a contribution rate of 62%.These results indicate that there is great potential to further improve air quality in the local area,and suggest that the comprehensive use of straw accompanied by reasonable planned burning is the best way to achieve this. 展开更多
关键词 PM_(2.5)(particulate matter with an aerodynamic diameter≤2.5μm) NO2 O3 aerosol optical depth(AOD) extinction coefficient depolarization ratio COVID-19(Corona Virus Disease-19)lockdown
下载PDF
Using a stand-level model to predict light absorption in stands with vertically and horizontally heterogeneous canopies 被引量:1
6
作者 David I Forrester Ruben Guisasola +3 位作者 Xiaolu Tang Axel T Albrecht Tran Lam Dong Guerric le Maire 《Forestry Studies in China》 CAS 2014年第3期158-176,共19页
Background: Forest ecosystem functioning is strongly influenced by the absorption of photosynthetically active radiation (APAR), and therefore, accurate predictions of APAR are critical for many process-based fores... Background: Forest ecosystem functioning is strongly influenced by the absorption of photosynthetically active radiation (APAR), and therefore, accurate predictions of APAR are critical for many process-based forest growth models. The Lambert-Beer law can be applied to estimate APAR for simple homogeneous canopies composed of one layer, one species, and no canopy gaps. However, the vertical and horizontal structure of forest canopies is rarely homogeneous. Detailed tree-level models can account for this heterogeneity but these often have high input and computational demands and work on finer temporal and spatial resolutions than required by stand-level growth models. The aim of this study was to test a stand-level light absorption model that can estimate APAR by individual species in mixed-species and multi-layered stands with any degree of canopy openness including open-grown trees to closed canopies. Methods: The stand-level model was compared with a detailed tree-level model that has already been tested in mixed-species stands using empirical data. Both models were parameterised for five different forests, including a wide range of species compositions, species proportions, stand densities, crown architectures and canopy structures. Results: The stand-level model performed well in all stands except in the stand where extinction coefficients were unusually variable and it appears unlikely that APAR could be predicted in such stands using (tree- or stand-level) models that do not allow individuals of a given species to have different extinction coefficients, leaf-area density or analogous parameters. Conclusion: This model is parameterised with species-specific information about extinction coefficients and mean crown length, diameter, height and leaf area. It could be used to examine light dynamics in complex canopies and in stand-level growth models. 展开更多
关键词 Complex forests MIXED-SPECIES Stand structure extinction coefficient Lambert-Beer law Light absorption
下载PDF
High Temperature Thermal Physical Properties of High-alumina Fibrous Insulation
7
作者 Boming ZHANG Shuyuan ZHAO Xiaodong HE Shanyi DU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第6期860-864,共5页
The thermal properties of high-alumina fibrous insulation which filled in metallic thermal protection system were investigated. The effective thermal conductivities of the fibrous insulation were measured under an atm... The thermal properties of high-alumina fibrous insulation which filled in metallic thermal protection system were investigated. The effective thermal conductivities of the fibrous insulation were measured under an atmospheric pressure from 10^-2 to 10^5 Pa. In addition, the changes of the specific heat and Rosseland mean extinction coefficient were experimentally determined under various surrounding temperatures up to 973 K. The spectral extinction coefficients were obtained from transmittance data in the wavelength range of 2.5- 25 μm using Beer's law. Rosseland mean extinction coefficients as a function of temperature were calculated based on spectral extinction coefficients at various temperatures. The results show that thermal conductivities of the sample increase with increasing temperature and pressure. Specific heat increases as temperature increases, which shows that the capacity of heat absorption increases gradually with temperature. Rosseland mean extinction coefficients of the sample decrease firstly and then increase with increasing the temperature. 展开更多
关键词 Effective thermal conductivity extinction coefficient TRANSMITTANCE Thermalphysical properties
下载PDF
Inversion Methods of Optical Constants of Semitransparent Solid Materials from Transmittance Spectrograms
8
作者 Dong Li Xin-Lin Xia Qing Ai 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第2期55-60,共6页
The direct calculation models of spectral transmittance of single and double slabs consisted of semitransparent solid materials were developed based on ray trace method,and a new inversion method of optical constants ... The direct calculation models of spectral transmittance of single and double slabs consisted of semitransparent solid materials were developed based on ray trace method,and a new inversion method of optical constants ( k is extinction coefficient and n is refractive index) of materials was proposed based on transmittance spectrograms of double slabs. Differences between the new method and two others currently used methods were studied,and application range of methods was also investigated. Optical constants of selenide glass attained in references were selected as true values,and spectral transmittances of glass simulated based on direct calculation model were regarded as experimental values. Optical constants of selenide glass were achieved by inverse models. Influences of measurement error on inverse results were also determined. The results showed that: (1) based on transmittance spectrograms of double slabs in which thickness of single slab is the same,the new proposed method can attain optical constants of materials; (2) the effect of optical constants n and k on three inversion methods are urgent larger,but inversed calculation precision of optical constants are higher in most application ranges; (3) the influence of measurement errors existed in experimental datum on the inverse precision of three methods are urgent 展开更多
关键词 semitransparent solid material optical constants extinction coefficient refractive index inverse model
下载PDF
Tunable Optical Bandgap of Gadolinium Substituted Nickel-Zinc Ferrite Nanoparticles-Effect of Calcination Temperature on Its Optical Parameters
9
作者 Katrapally Vijaya Kumar 《Advances in Materials Physics and Chemistry》 2022年第3期33-45,共13页
The gadolinium substituted nickel-zinc ferrite nanoparticles of the composition, Ni<sub>0.5</sub>Zn<sub>0.5</sub>Gd<sub>0.05</sub>Fe<sub>1.95</sub>O<sub>4</sub&... The gadolinium substituted nickel-zinc ferrite nanoparticles of the composition, Ni<sub>0.5</sub>Zn<sub>0.5</sub>Gd<sub>0.05</sub>Fe<sub>1.95</sub>O<sub>4</sub> were prepared using sol-gel method. In order to study the effect of calcination temperature on the optical parameters, the prepared powder was divided into five parts. The first part was taken as the as-prepared sample and the remaining four parts were calcinated at different temperatures, 600°C, 700°C, 800°C & 900°C. The X-ray diffraction patterns revealed the formation of cubic spinel structure with single phase and Fd3m space group. The crystallite size was increased from 11.75 nm to 18.13 nm as the calcination temperature increased from 600 to 900°C whereas as-prepared sample exhibited 17.61 nm. The dislocation density was decreased from 7.243 × 10<sup>-3</sup> to 3.042 × 10<sup>-3</sup> nm<sup>-2</sup> as the calcination temperature increased from 600°C to 900°C. The micro strain was decreased from 10 × 10<sup>-4</sup> to 6.452 × 10<sup>-4</sup> as the calcination temperature increased from 600°C to 900°C. The characteristic absorbance peaks were obtained at 255.2 nm for the ferrite nanoparticles of as-prepared and calcinated at 600°C and 800°C whereas it was obtained as 252.8 nm for the sample calcinated at 700°C and there was no such characteristic peak in UV-visible range for the sample calcinated at 900°C;it is expected in the below 200 nm region. The optical energy gap was calculated using Kubelka-Munk equation based on Tauc’s plot and found in the range 4.100 eV to 5.389 eV. The lowest energy gap of 4.100 eV exhibited by the sample calcinated at 700°C and the highest energy gap of 5.389 eV by the sample calcinated at 900°C. It is concluded that the tunable band gaps can be obtained with varying calcination temperature. 展开更多
关键词 XRD Optical Energy Bandgap Refractive Index Absorption Coefficient extinction Coefficient Real and Imaginary Parts of Dielectric Constant
下载PDF
Extinction coefficient per CdE (E = Se or S) unit for zinc- blende CdE nanocrystals 被引量:7
10
作者 Jiongzhao Li Jialiang Chen +1 位作者 Yongmiao Shen Xiaogang Peng 《Nano Research》 SCIE EI CAS CSCD 2018年第8期3991-4004,共14页
The extinction coefficient of semiconductor nanocrystals is a key parameter for understanding both the quantum confinement and applications of the nanocrystals. The existing extinction coefficients of CdE (E = Se, S... The extinction coefficient of semiconductor nanocrystals is a key parameter for understanding both the quantum confinement and applications of the nanocrystals. The existing extinction coefficients of CdE (E = Se, S) nanocrystals were found to have an unacceptable deviation for the zinc-blende CdE quantum dots (QDs). The analysis reveals that, in addition to the interference of impurities, the commonly applied extinction coefficient per CdE nanocrystal is sensitive to the size, shape, and density of the surface ligands of nanocrystals. The extinction coefficient per CdE unit does not depend on accurate information of the size, shape, and number of surface ligands of the nanocrystals. A new three-step purification scheme was developed to investigate three classes of possible impurities for accurate determination of the extinction coefficient per CdE unit, including CdE clusters not considered previously. Given that the sole ligands of zinc-blende CdE nanocrystals are cadmium fatty acid salts (CdFa2), a universal formula for the nanocrystals can be written as (CdE),(CdFa2),. The n:rn ratio was accurately determined for purified nanocrystals. The resulting extinction coefficients per unit for both CdSe and CdS QDs were found to decrease exponentially as the size of the QDs increases, with the corresponding bulk value as the large-size limit. 展开更多
关键词 extinction coefficient nanocrystal ZINC-BLENDE CdE unit
原文传递
A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems 被引量:5
11
作者 Liangxia ZHANG Zhongmin HU +2 位作者 Jiangwen FAN Decheng ZHOU Fengpei TANG 《Frontiers of Earth Science》 SCIE CAS CSCD 2014年第4期599-609,共11页
The canopy light extinction coefficient (K) is a key factor in affecting ecosystem carbon, water, and energy processes. However, K is assumed as a constant in most biogeochemical models owing to lack of in-site meas... The canopy light extinction coefficient (K) is a key factor in affecting ecosystem carbon, water, and energy processes. However, K is assumed as a constant in most biogeochemical models owing to lack of in-site measurements at diverse terrestrial ecosystems. In this study, by compiling data of K measured at 88 terrestrial ecosystems, we investigated the spatiotemporal variations of this index across main ecosystem types, including grassland, cropland, shrubland, broadleaf forest, and needleleaf forest. Our results indicated that the average K of all biome types during whole growing season was 0.56. However, this value in the peak growing season was 0.49, indicating a certain degree of seasonal variation. In addition, large variations in K exist within and among the plant functional types. Cropland had the highest value of K (0.62), followed by broadleaf forest (0.59), shrubland (0.56), grassland (0.50), and needleleaf forest (0.45). No significant spatial correlation was found between K and the major environmental factors, i.e., mean annual precipitation, mean annual temperature, and leaf area index (LAI). Intra-annually, significant negative correlations between K and seasonal changes in LAI were found in the natural {K=2/π[cosαcosθsina^-1(tanθtanα)+(1+cos^2a-cos^2θ^1/2)],a+θ〉π/2 K=cosαcosθ,α+θ≤π/2 k K is usually calculated with the Beer Lambert Law (Monsi and Sakei, 1953):K = - In (Ii/Io) cosθ/(LAIΩ),(2)ecosystems. In cropland, however, the temporal relation- ship was site-specific. The ecosystem type specific values of K and its temporal relationship with LAI observed in this study may contribute to improved modeling of global biogeochemical cycles. 展开更多
关键词 canopy light extinction coefficient ecologicalmodeling biogeochemical model FOREST GRASSLAND CROPLAND leaf area index
原文传递
Surface and intrinsic contributions to extinction properties of ZnSe quantum dots 被引量:5
12
作者 Shangxin Lin Jiongzhao Li +4 位作者 Chaodan Pu Hairui Lei Meiyi Zhu Haiyan Qin Xiaogang Peng 《Nano Research》 SCIE EI CAS CSCD 2020年第3期824-831,共8页
This work studies extinction properties of ZnSe quantum dots terminated with either Se-surface or Zn-surface(Se-ZnSe or Zn-ZnSe QDs).In addition to commonly observed photoluminescence quenching by anionic surface site... This work studies extinction properties of ZnSe quantum dots terminated with either Se-surface or Zn-surface(Se-ZnSe or Zn-ZnSe QDs).In addition to commonly observed photoluminescence quenching by anionic surface sites,Se-ZnSe QDs are found to show drastic signatures of Se-surface states in their UV-visible(Vis)absorption spectra.Similar to most QDs reported in literature,monodisperse Zn-ZnSe QDs show sharp absorption features and blue-shifted yet steep absorption edge respect to the bulk bandgap.However,for monodisperse Se-ZnSe QDs,all absorption features are smeared and a low-energy tail is identified to extend to an energy window below the bulk ZnSe bandgap.Along increasing their size,a cyclic growth of ZnSe QDs switches their surface from Zn-terminated to Se-terminated ones,which confirms that the specific absorption signatures are reproducibly repeated between those of two types of the QDs.Though the extinction coefficients per unit of Se-ZnSe QDs are always larger than those of Zn-ZnSe QDs with the same size,both of them approach the same bulk limit.In addition to contribution of the lattice,extinction coefficients per nanocrystal of Zn-ZnSe QDs show an exponential term against their sizes,which is expected for quantum-confinement enhancement of electron-hole wavefunction overlapping.For Se-ZnSe QDs,there is the third term identified for their extinction coefficients per nanocrystal,which is proportional to the square of size of the QDs and consistent with surface contribution. 展开更多
关键词 quantum dots ZNSE extinction coefficient surface state
原文传递
RELATIONSHIP BETWEEN HORIZONTAL EXTINCTION COEFFICIENT AND PM_(10) CONCENTRATION IN XI'AN,CHINA,DURING 1980-2002 被引量:3
13
作者 Huizheng Che Xiaoye Zhang +2 位作者 Yang Li Zijiang Zhou Zhenlin Chen 《China Particuology》 SCIE EI CAS CSCD 2006年第6期327-329,共3页
Based on daily visibility data obtained from 1980-2002 and air pollution index data from 2001-2004 in Xi'an, long-term variations and relationships for daily horizontal extinction coefficient and mass concentration o... Based on daily visibility data obtained from 1980-2002 and air pollution index data from 2001-2004 in Xi'an, long-term variations and relationships for daily horizontal extinction coefficient and mass concentration of PM10 have been evaluated. A decreasing trend was found in horizontal extinction coefficient during the past 23 years, with higher values observed in 1980s relative to 1990s, and the highest and lowest values in winter and summer, respectively. Significant correlation and similar seasonal variations existed between horizontal extinction coefficient and PM10 concentration, suggesting the high influence of PM10 to the visibility drop at a site in the Guanzhong Plain of central China during the past two decades. 展开更多
关键词 VISIBILITY AEROSOL horizontal extinction coefficient air pollution index Xi'an
原文传递
Effects of relative humidity and PM2.5 chemical compositions on visibility impairment in Chengdu, China 被引量:22
14
作者 Fan Liu Qinwen Tan +2 位作者 Xia Jiang Fumo Yang Wenju Jiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第12期15-23,共9页
To better understand the potential causes of visibility impairment in autumn and winter in Chengdu,relative humidity(RH),visibility,the concentrations of PM2.5 and its chemical components were on-line measured continu... To better understand the potential causes of visibility impairment in autumn and winter in Chengdu,relative humidity(RH),visibility,the concentrations of PM2.5 and its chemical components were on-line measured continuously in Chengdu from Nov.2016 to Jan.2017.Six obvious haze episodes occurred in Chengdu,with the total time of haze episodes accounted for more than 90%of the total observation period,and higher NO2 concentrations and RH were related to the high particle concentrations in haze episodes.The visibility decreased in a non-linear tendency under different RH conditions with the increase of PM2.5 concentrations,which was more sensitive to RH under lower PM2.5 concentrations.The threshold concentration of PM2.5 got more smaller with the increase of RH.During the entire observation period,organic matter(OM)was the largest contributor(31.12%to extinction coefficient(bext)),followed by NH4NO3 and(NH4)2SO4 with 28.03%and 23.01%,respectively.However,with the visibility impairment from Type I(visibility>10 km)to Type IV(visibility≤2 km),the contribution of OM to bextdecreased from 38.12%to 26.77%,while the contribution of NH4NO3 and(NH4)2SO4 to bextincreased from 19.09%and 20.20%to 34.29%and 24.35%,respectively,and NH4NO3 became the largest contributor to bextat Type IV.The results showed that OM and NH4NO3 were the key components of PM2.5 for visibility impairment in Chengdu,indicating that the control of precursors emissions of carbonaceous species and NH4NO3 could effectively improve the visibility in Chengdu. 展开更多
关键词 Visibility impairment PM2.5 chemical composition Relative humidity Light extinction coefficient Secondary formation
原文传递
Aerosol observation in Fengtai area,Beijing 被引量:6
15
作者 Zengdong Liu Jianguo Liu Bei Wang Fan Lu Shuhua Huang Dexia Wu Daowen Hart 《Particuology》 SCIE EI CAS CSCD 2008年第3期214-217,共4页
Measurements of aerosol number concentration and particulate matter with diameter less than 10 μm (PM10) mass concentrations of urban background aerosols were performed in Fengtai area, Beijing in 2006. Black carb... Measurements of aerosol number concentration and particulate matter with diameter less than 10 μm (PM10) mass concentrations of urban background aerosols were performed in Fengtai area, Beijing in 2006. Black carbon (BC) was collected simultaneously from the ground and analyzed to determine the particulate matter components. To satisfy the interest in continuous monitoring of temporal and spatial distribution of aerosols, the relationship between extinction coefficient (visibility) measured by lidar remote sensing and the aerosol number concentration measured from the ground was derived by using statistical method. Vertical particle number concentration profile within the planetary boundary layer could be inversed through the lidar data as well as the statistical relation. 展开更多
关键词 Number concentration Aerosol components extinction coefficient Vertical distribution
原文传递
Changes in visibility with PM_(2.5) composition and relative humidity at a background site in the Pearl River Delta region 被引量:18
16
作者 Xiaoxin Fu Xinming Wang +9 位作者 Qihou Hu Guanghui Li Xiang Ding Yanli Zhang Quanfu He Tengyu Liu Zhou Zhang Qingqing Yu Ruqing Shen Xinhui Bi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第2期10-19,共10页
In fall–winter, 2007–2013, visibility and light scattering coefficients(b sp) were measured along with PM_(2.5)mass concentrations and chemical compositions at a background site in the Pearl River Delta(PRD) r... In fall–winter, 2007–2013, visibility and light scattering coefficients(b sp) were measured along with PM_(2.5)mass concentrations and chemical compositions at a background site in the Pearl River Delta(PRD) region. The daily average visibility increased significantly(p 〈 0.01) at a rate of 1.1 km/year, yet its median stabilized at ~13 km. No haze days occurred when the 24-hr mean PM_(2.5)mass concentration was below 75 μg/m^3. By multiple linear regression on the chemical budget of particle scattering coefficient(b sp), we obtained site-specific mass scattering efficiency(MSE) values of 6.5 ± 0.2, 2.6 ± 0.3, 2.4 ± 0.7 and 7.3 ± 1.2 m2/g,respectively, for organic matter(OM), ammonium sulfate(AS), ammonium nitrate(AN) and sea salt(SS). The reconstructed light extinction coefficient(b ext) based on the Interagency Monitoring of Protected Visual Environments(IMPROVE) algorithm with our site-specific MSE revealed that OM, AS, AN, SS and light-absorbing carbon(LAC) on average contributed 45.9% ± 1.6%,25.6% ± 1.2%, 12.0% ± 0.7%, 11.2% ± 0.9% and 5.4% ± 0.3% to light extinction, respectively.Averaged b ext displayed a significant reduction rate of 14.1/Mm·year(p 〈 0.05); this rate would be 82% higher if it were not counteracted by increasing relative humidity(RH) and hygroscopic growth factor(f(RH)) at rates of 2.5% and 0.16/year-1(p 〈 0.01), respectively, during the fall–winter, 2007–2013. This growth of RH and f(RH) partly offsets the positive effects of lowered AS in improving visibility, and aggravated the negative effects of increasing AN to impair visibility. 展开更多
关键词 PM_(2.5) Visibility Mass scattering efficiency Light extinction coefficient Relative humidity
原文传递
Size dependent optical properties of LaB_6 nanoparticles enhanced by localized surface plasmon resonance 被引量:1
17
作者 洪源 张晓松 +4 位作者 李波 李梦真 石庆良 王有为 李岚 《Journal of Rare Earths》 SCIE EI CAS CSCD 2013年第11期1096-1101,共6页
Lanthanum hexaboride nanopartieles, with high emission electrons in cathode materials and peculiar blocking near infrared wavelengths, were applied for many aspects. Based on the quasi-static approximation of Mie theo... Lanthanum hexaboride nanopartieles, with high emission electrons in cathode materials and peculiar blocking near infrared wavelengths, were applied for many aspects. Based on the quasi-static approximation of Mie theory, the size dependent optical prop- erties of LaB6 nanoparticles were researched, such as refractive index n(ω), extinction coefficient k(ω), reflectivity R(ω), absorption coefficient a(ω), and electron energy loss L(ω). Due to the localized surface plasmon resonance (LSPR), the extinction coefficient k(ω) and absorption coefficient a(ω) depended on the size, and the LSPR peaks red-shifted with sizes increased, which was different from that of bulk materials. In addition, electron energy-loss spectrum L(co) showed electrons oscillation reinforced, since electrons absorbed the photon energy and generated resonance. Further, reftectivity R(ω) and refractive index n(ω) indicated that the light in near infrared region could not be propagated on the surface of LaB6 materials, which exhibited metallic behaviors. So the resonance peak of LaB6 nanoparticle was located in near-infrared region, making use of this property for solar control glazing and heat-shielding application. 展开更多
关键词 LaB6 nanoparticles optical properties localized surface plasmon resonance absorption coefficient extinction coefficient rare earths
原文传递
Optical properties of GaAs 被引量:1
18
作者 J.O.Akinlami A.O.Ashamu 《Journal of Semiconductors》 EI CAS CSCD 2013年第3期7-11,共5页
We have investigated the optical properties of gallium arsenide(GaAs) in the photon energy range 0.6- 6.0 eV.We obtained a refractive index which has a maximum value of 5.0 at a photon energy of 3.1 eV;an extinction c... We have investigated the optical properties of gallium arsenide(GaAs) in the photon energy range 0.6- 6.0 eV.We obtained a refractive index which has a maximum value of 5.0 at a photon energy of 3.1 eV;an extinction coefficient which has a maximum value of 4.2 at a photon energy of 5.0 eV;the dielectric constant,the real part of the complex dielectric constant has a maximum value of 24 at a photon energy of 2.8 eV and the imaginary part of the complex dielectric constant has a maximum value of 26.0 at a photon energy of 4.8 eV;the transmittance which has a maximum value of 0.22 at a photon energy of 4.0 eV;the absorption coefficient which has a maximum value of 0.22×10~8 m^(-1) at a photon energy of 4.8 eV,the reflectance which has a maximum value of 0.68 at 5.2eV; the reflection coefficient which has a maximum value of 0.82 at a photon energy of 5.2 eV;the real part of optical conductivity has a maximum value of 14.2×10^(15) at 4.8 eV and the imaginary part of the optical conductivity has a maximum value of 6.8×10^(15) at 5.0 eV.The values obtained for the optical properties of GaAs are in good agreement with other results. 展开更多
关键词 complex index of refraction extinction coefficient complex dielectric constant TRANSMITTANCE absorption coefficient semiconductor and photon energy
原文传递
A Novel Four-Wavelength Transmissometer for Distinguishing Haze and Fog 被引量:1
19
作者 王久珂 毛节泰 +4 位作者 赵春生 颜鹏 马楠 刘鹏飞 刘晓阳 《Acta meteorologica Sinica》 SCIE 2013年第4期556-565,共10页
Haze and fog exhibit different microphysical and optical properties according to Mie scattering theory. Haze particles are smaller than fog droplets. Light of a shorter wavelength is reduced more than that of a longer... Haze and fog exhibit different microphysical and optical properties according to Mie scattering theory. Haze particles are smaller than fog droplets. Light of a shorter wavelength is reduced more than that of a longer wavelength during haze events. In fog, the differences between the extinction coefficients at different wavelengths are not as apparent. On the basis of the different light extinction characteristics of haze and fog, a novel four-wavelength transmissometer based on charge-coupled device (CCD) imaging was designed to distinguish haze from fog with central wavelengths at 415, 516, 650, and 850 nm. The four-wavelength transmissometer was tested in an insitu experiment during the winter of 2009. Fog was determined when the differences of the extinction coefficients at the four wavelengths were not notable, whereas haze was determined when the light at shorter wavelengths was significantly more reduced than that at longer wavelengths. A threshold which describes the relative size of the extinction coefficients at the four wavelengths was defined to distinguish between fog and haze. The four-wavelength transmissometer provided results consistent with the commercial fog monitor during several measurements made in fog and haze events, especially under conditions of low visibility and high relative humidity. 展开更多
关键词 FOG HAZE extinction coefficient four-wavelength transmissometer
原文传递
Vertical Distributions of Aerosol Optical Properties during Haze and Floating Dust Weather in Shanghai 被引量:3
20
作者 刘琼 王苑 +6 位作者 匡中玉 方思华 陈勇航 亢燕铭 张华 王道源 傅滢滢 《Journal of Meteorological Research》 SCIE CSCD 2016年第4期598-613,共16页
A comparative study on the vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai was conducted based on the data obtained from a micro pulse lidar.There was a distinct ... A comparative study on the vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai was conducted based on the data obtained from a micro pulse lidar.There was a distinct difference in layer thickness and extinction coefficient under the two types of weather conditions.Aerosols were concentrated below 1 km and the aerosol extinction coefficients ranged from 0.25 to 1.50km^(-1) on haze days.In contrast,aerosols with smaller extinction coefficients(0.20 0.35 km^(-1)) accumulated mainly from the surface to 2 km on floating dust days.The seasonal variations of extinction and aerosol optical depth(AOD) for both haze and floating dust cases were similar greatest in winter,smaller in spring,and smallest in autumn.More than 85%of the aerosols appeared in the atmosphere below 1 km during severe haze and floating dust weather.The diurnal variation of the extinction coefficient of haze exhibited a bimodal shape with two peaks in the morning or at noon,and at nightfall,respectively.The aerosol extinction coefficient gradually increased throughout the day during floating dust weather.Case studies showed that haze aerosols were generated from the surface and then lifted up,but floating dust aerosols were transported vertically from higher altitude to the surface.The AOD during floating dust weather was higher than that during haze.The boundary layer was more stable during haze than during floating dust weather. 展开更多
关键词 aerosol extinction coefficient AOD vertical distribution atmospheric boundary layer
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部