The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example....The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.展开更多
The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has exper...The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has experienced four tectonic movements and developed four sets of tectonic fractures in the extra low-permeability sandstone reservoir at the south of western Sichuan depression. The strikes of fractures are in the S-N, NE-SW, E-W, and NW-SE directions respectively. At the end of Triassic, under the horizontal compression tectonic stress field, for which the maximum principal stress direction was NW.SE, the fractures were well developed near the S-N faults and at the end of NE-SW faults, because of their stress concentration. At the end of Cretaceous, in the horizontal compression stress fields of the NE-SW direction, the stress was obviously lower near the NE-SW faults, thus, fractures mainly developed near the S-N faults. At the end of Neogene-Early Pleistocene, under the horizontal compression tectonic stress fields of E-W direction, stress concentrated near the NE-SW faults and fractures developed at these places, especially at the end of the NE-SE faults, the cross positions of NE-SW, and S-N faults. Therefore, fractures developed mostly near S-N faults and NE-SW faults. At the cross positions of the above two sets of faults, the degree of development of the fractures was the highest. Under the modern stress field of the NW-SE direction, the NW-SE fractures were mainly the seepage ones with tensional state, the best connectivity, the widest aperture, the highest permeability, and the minimum opening pressure.展开更多
For extra-low permeability reservoirs, with a permeability of about 0.3×10?3 μm2, fluid flow and production performance in cores were studied. A long core holder with a multi-location piezometric measurement was...For extra-low permeability reservoirs, with a permeability of about 0.3×10?3 μm2, fluid flow and production performance in cores were studied. A long core holder with a multi-location piezometric measurement was specially designed. An artificial long core, about 700 mm long and with a cross section of 45mm×45mm, was used. In the experiment, pressure distribution along the core can be measured in real time. Single phase flow in the core was investigated. Different modes of production in long cores were also simulated including natural depletion, water flooding, and advanced water flooding. Through physical simulation, flow parameters were collected and production characteristics in extra-low permeability cores were studied. From experimental results, it can be seen that fluid flow in extra-low permeability cores is different from that in high permeability cores. Transmission of pressure in extra-low permeability cores is very slow, and it needs a long time for the pressure to become stable. The distribution curve of pressure along the core is nonlinear and the production rate in extra-low permeability reservoirs decreases sharply. The development effects of different production modes in extra-low permeability cores were compared with one another. Among the production modes, advanced water flooding has much potential for effective development of extra-low permeability reservoirs. Natural depletion and conventional water flooding can also be used in early production periods. In addition, the countermeasures and some ideas especially for the potential development of extra-low permeability reservoirs are suggested.展开更多
Based on the study of natural gas resource, low buried hill trap formation mechanism, high quality reservoir control factors and natural gas preservation conditions, the formation conditions and reservoir accumulation...Based on the study of natural gas resource, low buried hill trap formation mechanism, high quality reservoir control factors and natural gas preservation conditions, the formation conditions and reservoir accumulation characteristics of Bozhong 19-6 large condensate gas field were summarized. Large gas generation potential of multiple sets of thick humic-sapropelic source rocks in high maturity stage in Bozhong depression was the basis of large gas field formation. The multi-stage tectonic evolution since Indosinian period formed large-scale buried hill traps. The Tanlu fault activity formed multi-type reservoirs, and buried hill metamorphic rock of Archean and sand-conglomerate of Kongdian Formation were high-quality reservoirs. Thick overpressure lacustrine mudstone and weak neotectonic movement provided good preservation conditions. Bozhong 19-6 gas reservoir was a condensate gas reservoir with very high condensate oil content, and the gas origin was humic-sapropelic and kerogen-cracking gas, and the gas field had large gas thickness, high gas column characteristics and the accumulation process was first oil and then gas. The buried hill reservoir was a massive reservoir and the Kongdian reservoir was a stratified reservoir. The gas field had multi-channel hydrocarbon intense charge from overpressure source rocks, atmospheric-weak overpressure reservoir favorable for accumulation, thick overpressure mudstone caprock favorable for preservation, and natural gas ultra-late rapid accumulation model.展开更多
基金Supported by the Natural Science Foundation of Shaanxi Province,China(2010JM5003)
文摘The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.
基金This paper is financially supported by the National Natural Science Foundation of China (No. 40572080)the China National Petroleum Corporation (CNPC) Petroleum Science and Technology Innovation Foundation (No.05E7026)
文摘The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has experienced four tectonic movements and developed four sets of tectonic fractures in the extra low-permeability sandstone reservoir at the south of western Sichuan depression. The strikes of fractures are in the S-N, NE-SW, E-W, and NW-SE directions respectively. At the end of Triassic, under the horizontal compression tectonic stress field, for which the maximum principal stress direction was NW.SE, the fractures were well developed near the S-N faults and at the end of NE-SW faults, because of their stress concentration. At the end of Cretaceous, in the horizontal compression stress fields of the NE-SW direction, the stress was obviously lower near the NE-SW faults, thus, fractures mainly developed near the S-N faults. At the end of Neogene-Early Pleistocene, under the horizontal compression tectonic stress fields of E-W direction, stress concentrated near the NE-SW faults and fractures developed at these places, especially at the end of the NE-SE faults, the cross positions of NE-SW, and S-N faults. Therefore, fractures developed mostly near S-N faults and NE-SW faults. At the cross positions of the above two sets of faults, the degree of development of the fractures was the highest. Under the modern stress field of the NW-SE direction, the NW-SE fractures were mainly the seepage ones with tensional state, the best connectivity, the widest aperture, the highest permeability, and the minimum opening pressure.
基金supported by China National Program on Key Basic Research Project (973 Program) (Grant No. 2006CB705805)National Key Scientific and Technological Project (Grant No. 2008ZX05009-004)
文摘For extra-low permeability reservoirs, with a permeability of about 0.3×10?3 μm2, fluid flow and production performance in cores were studied. A long core holder with a multi-location piezometric measurement was specially designed. An artificial long core, about 700 mm long and with a cross section of 45mm×45mm, was used. In the experiment, pressure distribution along the core can be measured in real time. Single phase flow in the core was investigated. Different modes of production in long cores were also simulated including natural depletion, water flooding, and advanced water flooding. Through physical simulation, flow parameters were collected and production characteristics in extra-low permeability cores were studied. From experimental results, it can be seen that fluid flow in extra-low permeability cores is different from that in high permeability cores. Transmission of pressure in extra-low permeability cores is very slow, and it needs a long time for the pressure to become stable. The distribution curve of pressure along the core is nonlinear and the production rate in extra-low permeability reservoirs decreases sharply. The development effects of different production modes in extra-low permeability cores were compared with one another. Among the production modes, advanced water flooding has much potential for effective development of extra-low permeability reservoirs. Natural depletion and conventional water flooding can also be used in early production periods. In addition, the countermeasures and some ideas especially for the potential development of extra-low permeability reservoirs are suggested.
基金Supported by the China National Science and Technology Major Project(2016ZX05024-003-001)
文摘Based on the study of natural gas resource, low buried hill trap formation mechanism, high quality reservoir control factors and natural gas preservation conditions, the formation conditions and reservoir accumulation characteristics of Bozhong 19-6 large condensate gas field were summarized. Large gas generation potential of multiple sets of thick humic-sapropelic source rocks in high maturity stage in Bozhong depression was the basis of large gas field formation. The multi-stage tectonic evolution since Indosinian period formed large-scale buried hill traps. The Tanlu fault activity formed multi-type reservoirs, and buried hill metamorphic rock of Archean and sand-conglomerate of Kongdian Formation were high-quality reservoirs. Thick overpressure lacustrine mudstone and weak neotectonic movement provided good preservation conditions. Bozhong 19-6 gas reservoir was a condensate gas reservoir with very high condensate oil content, and the gas origin was humic-sapropelic and kerogen-cracking gas, and the gas field had large gas thickness, high gas column characteristics and the accumulation process was first oil and then gas. The buried hill reservoir was a massive reservoir and the Kongdian reservoir was a stratified reservoir. The gas field had multi-channel hydrocarbon intense charge from overpressure source rocks, atmospheric-weak overpressure reservoir favorable for accumulation, thick overpressure mudstone caprock favorable for preservation, and natural gas ultra-late rapid accumulation model.