This paper analyzes the gas source of the horizontally sectioned fully mechanized caving face in the steeply inclined and extra-thick seam of Adaohai Coal Mine, and numerically simulates the stress distribution and pr...This paper analyzes the gas source of the horizontally sectioned fully mechanized caving face in the steeply inclined and extra-thick seam of Adaohai Coal Mine, and numerically simulates the stress distribution and pressure relief of the lower section coal after the upper section working face is mined. It theoretically analyzed the reasonable layout of the drainage boreholes, and designed the drainage borehole layout accordingly. In the upper and lower section of the working face, the actual drainage effect of the boreholes was inspected, and the air exhaust gas volume in the working face was statistically analyzed. It was confirmed that the layout of boreholes was reasonable, the gas control effect of working face was greatly improved and fully met the needs of safe mining. The control effect was greatly improved and the need for safe mining was fully met, and thus a gas drainage technology suitable for the coal seam storage conditions and mining technology of the Adaohai Coal Mine was found. That is to say: the gas emission from the working face of the section mining mainly comes from its lower coal body. Pre-draining the lower coal body of the section and depressurizing gas interception and drainage are the key to effectively solve the problem of gas emission from the working face. Drainage boreholes in the working face of the section should be arranged at high and low positions. The high-level boreholes are located about 2 m from the top of the working face, and the high-level boreholes are about 9 m away from the top of the working face. Through the pre drainage of high and low-level boreholes in advance and the interception and pressure relief drainage, the gas control in the horizontal sublevel fully mechanized caving mining face in steep and extra thick coal seam can realize a virtuous cycle.展开更多
在谷子(Setaria italica Beauv.)生长的各个时期拔取3株与挂牌植株长势一致的谷子进行各器官形态和生物量参数测量,基于有效积温,结合Logistic模型,构建谷子株高、地上部干物质量、叶面积随有效积温变化的生长模型。结果显示,当有效积温...在谷子(Setaria italica Beauv.)生长的各个时期拔取3株与挂牌植株长势一致的谷子进行各器官形态和生物量参数测量,基于有效积温,结合Logistic模型,构建谷子株高、地上部干物质量、叶面积随有效积温变化的生长模型。结果显示,当有效积温在700~900℃时,谷子处于拔节至孕穗期,株高的增长速率最快;当有效积温在1100~1200℃时,谷子处于拔节至灌浆期,地上部干物质量的增长速率最快;当有效积温在600~800℃时,谷子处于拔节至抽穗期,叶面积增长的速率最快,当有效积温在1000~1100℃时,谷子的叶面积达到最大;3个模型的R2分别为0.9891、0.9636、0.9649,经检验表明模型精度较高,显著性较好。基于有效积温的谷子生长模型构建可较好地预测谷子的株高、地上部干物质量、叶面积的生长变化。展开更多
文摘This paper analyzes the gas source of the horizontally sectioned fully mechanized caving face in the steeply inclined and extra-thick seam of Adaohai Coal Mine, and numerically simulates the stress distribution and pressure relief of the lower section coal after the upper section working face is mined. It theoretically analyzed the reasonable layout of the drainage boreholes, and designed the drainage borehole layout accordingly. In the upper and lower section of the working face, the actual drainage effect of the boreholes was inspected, and the air exhaust gas volume in the working face was statistically analyzed. It was confirmed that the layout of boreholes was reasonable, the gas control effect of working face was greatly improved and fully met the needs of safe mining. The control effect was greatly improved and the need for safe mining was fully met, and thus a gas drainage technology suitable for the coal seam storage conditions and mining technology of the Adaohai Coal Mine was found. That is to say: the gas emission from the working face of the section mining mainly comes from its lower coal body. Pre-draining the lower coal body of the section and depressurizing gas interception and drainage are the key to effectively solve the problem of gas emission from the working face. Drainage boreholes in the working face of the section should be arranged at high and low positions. The high-level boreholes are located about 2 m from the top of the working face, and the high-level boreholes are about 9 m away from the top of the working face. Through the pre drainage of high and low-level boreholes in advance and the interception and pressure relief drainage, the gas control in the horizontal sublevel fully mechanized caving mining face in steep and extra thick coal seam can realize a virtuous cycle.
文摘在谷子(Setaria italica Beauv.)生长的各个时期拔取3株与挂牌植株长势一致的谷子进行各器官形态和生物量参数测量,基于有效积温,结合Logistic模型,构建谷子株高、地上部干物质量、叶面积随有效积温变化的生长模型。结果显示,当有效积温在700~900℃时,谷子处于拔节至孕穗期,株高的增长速率最快;当有效积温在1100~1200℃时,谷子处于拔节至灌浆期,地上部干物质量的增长速率最快;当有效积温在600~800℃时,谷子处于拔节至抽穗期,叶面积增长的速率最快,当有效积温在1000~1100℃时,谷子的叶面积达到最大;3个模型的R2分别为0.9891、0.9636、0.9649,经检验表明模型精度较高,显著性较好。基于有效积温的谷子生长模型构建可较好地预测谷子的株高、地上部干物质量、叶面积的生长变化。