相较于常规扩展有限元法(extended finite element method,XFEM),改进型扩展有限元法(improved XFEM)解决了现有方法线性相关与总体刚度矩阵高度病态问题,在数量级上提升了总体方程的求解效率,克服了现有方法在动力学问题中的能量正确...相较于常规扩展有限元法(extended finite element method,XFEM),改进型扩展有限元法(improved XFEM)解决了现有方法线性相关与总体刚度矩阵高度病态问题,在数量级上提升了总体方程的求解效率,克服了现有方法在动力学问题中的能量正确传递、动态应力强度因子数值震荡、精度低下问题.本文基于改进型XFEM,采用Newmark隐式时间积分算法,重点研究了动载荷作用下扩展裂纹尖端应力强度因子的求解方法,与静力学方法相比,增加了裂纹扩展速度项与惯性项的贡献.通过数值算例研究了网格单元尺寸、质量矩阵、时间步长、裂尖加强区域、惯性项、扩展速度项及相互作用积分区域J-domain的网格与单元尺寸对动态应力强度因子求解精度的影响,验证了改进型XFEM计算动态裂纹应力强度因子方法的有效性.针对文献中具有挑战性的"I型半无限长裂纹先稳定后扩展"问题,改进型XFEM给出目前为止精度最好的动态应力强度因子数值解.展开更多
文摘C^1连续,即一阶导数连续. C^1连续型插值格式具有同时适用于离散PDE的弱形式与强形式的优点——即一种插值格式可以在使用PDE弱形式还是强形式之间做出选择,从而构造出更加高效的数值方法.由于单位分解广义有限元方法 (PUFEM, Babuka and Melenk (1997)),允许用户根据局部解的特征自定义任意高阶局部近似,具有精度高、程序实现与传统有限元相容性好的特点而受到广泛关注.但是,其总体近似函数的光滑性是由其所采用的单位分解函数——一般为标准有限元形函数——的光滑性所决定,因此多为C^0连续.如何在C^0连续标准有限元形函数的基础上,构造出满足C^1连续的总体近似函数,是一个仍未解决的问题.本文在作者前期研究的无额外自由度的单位分解插值格式的基础上,仅基于C^0标准有限元形函数,构造出至少C^1连续的无额外自由度单位分解格式.针对Poisson方程,讨论了该格式对PDE弱形式与强形式的离散.测试结果表明,方法可以同时用于弱形式与强形式的数值求解,而且可以在不改变网格和自由度数的前提下,获得高阶收敛.使用该插值格式的条件是:网格须是直角坐标网格(不要求均匀).该插值格式可以同时用于流体力学问题和使用欧拉背景网格求解动量方程的固体力学方法,如材料物质点法(material point method).对于强形式的欧拉网格求解,该插值格式与"差分"不同之处在于,它具有有限元一样的在任意点处进行"插值"的特点.对于弱形式的积分求解,由于该插值格式具有导数连续性,可以允许积分网格独立于插值网格.这一特点将使得弱形式的数值积分的实施更加灵活方便.
文摘相较于常规扩展有限元法(extended finite element method,XFEM),改进型扩展有限元法(improved XFEM)解决了现有方法线性相关与总体刚度矩阵高度病态问题,在数量级上提升了总体方程的求解效率,克服了现有方法在动力学问题中的能量正确传递、动态应力强度因子数值震荡、精度低下问题.本文基于改进型XFEM,采用Newmark隐式时间积分算法,重点研究了动载荷作用下扩展裂纹尖端应力强度因子的求解方法,与静力学方法相比,增加了裂纹扩展速度项与惯性项的贡献.通过数值算例研究了网格单元尺寸、质量矩阵、时间步长、裂尖加强区域、惯性项、扩展速度项及相互作用积分区域J-domain的网格与单元尺寸对动态应力强度因子求解精度的影响,验证了改进型XFEM计算动态裂纹应力强度因子方法的有效性.针对文献中具有挑战性的"I型半无限长裂纹先稳定后扩展"问题,改进型XFEM给出目前为止精度最好的动态应力强度因子数值解.