期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
六自由度虚拟轴机床预处理算法研究及系统建造 被引量:10
1
作者 杨向东 李铁民 +2 位作者 魏永明 段广洪 汪劲松 《中国机械工程》 EI CAS CSCD 北大核心 1998年第5期82-86,共5页
研究了六自由度虚拟轴机床的预处理算法 ,阐述了利用多余自由度提高机床工作性能的策略 ,并结合 VAMT1 Y探讨了虚拟轴机床预处理系统的实现方法。
关键词 虚拟轴机床 多余自由度 数控 预处理 系统建造
下载PDF
C^1连续型广义有限元格式 被引量:3
2
作者 田荣 《力学学报》 EI CSCD 北大核心 2019年第1期263-277,共15页
C^1连续,即一阶导数连续. C^1连续型插值格式具有同时适用于离散PDE的弱形式与强形式的优点——即一种插值格式可以在使用PDE弱形式还是强形式之间做出选择,从而构造出更加高效的数值方法.由于单位分解广义有限元方法 (PUFEM, Babuka ... C^1连续,即一阶导数连续. C^1连续型插值格式具有同时适用于离散PDE的弱形式与强形式的优点——即一种插值格式可以在使用PDE弱形式还是强形式之间做出选择,从而构造出更加高效的数值方法.由于单位分解广义有限元方法 (PUFEM, Babuka and Melenk (1997)),允许用户根据局部解的特征自定义任意高阶局部近似,具有精度高、程序实现与传统有限元相容性好的特点而受到广泛关注.但是,其总体近似函数的光滑性是由其所采用的单位分解函数——一般为标准有限元形函数——的光滑性所决定,因此多为C^0连续.如何在C^0连续标准有限元形函数的基础上,构造出满足C^1连续的总体近似函数,是一个仍未解决的问题.本文在作者前期研究的无额外自由度的单位分解插值格式的基础上,仅基于C^0标准有限元形函数,构造出至少C^1连续的无额外自由度单位分解格式.针对Poisson方程,讨论了该格式对PDE弱形式与强形式的离散.测试结果表明,方法可以同时用于弱形式与强形式的数值求解,而且可以在不改变网格和自由度数的前提下,获得高阶收敛.使用该插值格式的条件是:网格须是直角坐标网格(不要求均匀).该插值格式可以同时用于流体力学问题和使用欧拉背景网格求解动量方程的固体力学方法,如材料物质点法(material point method).对于强形式的欧拉网格求解,该插值格式与"差分"不同之处在于,它具有有限元一样的在任意点处进行"插值"的特点.对于弱形式的积分求解,由于该插值格式具有导数连续性,可以允许积分网格独立于插值网格.这一特点将使得弱形式的数值积分的实施更加灵活方便. 展开更多
关键词 单位分解插值 广义有限元 无额外自由度 C1连续
下载PDF
改进型XFEM进展 被引量:9
3
作者 田荣 文龙飞 《计算力学学报》 CAS CSCD 北大核心 2016年第4期469-477,共9页
扩展有限元法(XFEM)在诞生后的十几年时间里,引起学术界和工业界的广泛关注,并已经成为目前裂纹分析的主流数值方法。然而,在实际应用中该法一直受到两方面的困扰,(1)总体方程高度病态;刚度阵条件数随网格尺寸呈h-6变化(普通有限元为h-2... 扩展有限元法(XFEM)在诞生后的十几年时间里,引起学术界和工业界的广泛关注,并已经成为目前裂纹分析的主流数值方法。然而,在实际应用中该法一直受到两方面的困扰,(1)总体方程高度病态;刚度阵条件数随网格尺寸呈h-6变化(普通有限元为h-2)。(2)裂尖强化插值由于能量一致性问题无法直接推广应用于动力学计算。前者表现在XFEM稳态问题的迭代求解收敛慢或难以收敛,后者长期以来导致XFEM裂纹扩展动力学计算实施困难。本文认为XFEM目前遇到的种种困难,均与单位分解引入的额外自由度相关。为此,提出了无额外自由度的单位分解插值格式,基于此格式,进一步构造出改进型扩展有限元方法。改进型XFEM具有如下特点,(1)可以消除原有XFEM的线性依赖性和总体方程病态的问题。(2)避免动力学问题中额外自由度引起的质量集中、零临界时间步长问题以及裂纹扩展过程中的能量一致性问题。本文结合静动力学测试问题综述上述改进。 展开更多
关键词 XFEM 扩展有限元法 广义有限元 线性依赖 质量集中 动态裂纹扩展
下载PDF
动载下裂纹应力强度因子计算的改进型扩展有限元法 被引量:19
4
作者 文龙飞 王理想 田荣 《力学学报》 EI CSCD 北大核心 2018年第3期599-610,共12页
相较于常规扩展有限元法(extended finite element method,XFEM),改进型扩展有限元法(improved XFEM)解决了现有方法线性相关与总体刚度矩阵高度病态问题,在数量级上提升了总体方程的求解效率,克服了现有方法在动力学问题中的能量正确... 相较于常规扩展有限元法(extended finite element method,XFEM),改进型扩展有限元法(improved XFEM)解决了现有方法线性相关与总体刚度矩阵高度病态问题,在数量级上提升了总体方程的求解效率,克服了现有方法在动力学问题中的能量正确传递、动态应力强度因子数值震荡、精度低下问题.本文基于改进型XFEM,采用Newmark隐式时间积分算法,重点研究了动载荷作用下扩展裂纹尖端应力强度因子的求解方法,与静力学方法相比,增加了裂纹扩展速度项与惯性项的贡献.通过数值算例研究了网格单元尺寸、质量矩阵、时间步长、裂尖加强区域、惯性项、扩展速度项及相互作用积分区域J-domain的网格与单元尺寸对动态应力强度因子求解精度的影响,验证了改进型XFEM计算动态裂纹应力强度因子方法的有效性.针对文献中具有挑战性的"I型半无限长裂纹先稳定后扩展"问题,改进型XFEM给出目前为止精度最好的动态应力强度因子数值解. 展开更多
关键词 改进型XFEM 无额外自由度单位分解 扩展裂纹 动态应力强度因子 线弹性断裂力学
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部